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Dedication

In the beginning God created the heavens and the earth.

And God said, “Let there be light,” and there was light. And God Said, “Let there be an

expanse between the waters to separate water from water.” And it was so. And God said, “Let

the water under the sky be gathered to one place, and let dry ground appear.” And it was so.

Then God said, “Let the land produce vegetation.” And it was so. And God said, “Let there be

lights in the expanse of the sky.” And it was so. And God said, “Let the water teem with living

creatures, and let birds fly above the earth across the expanse of the sky.” And God saw that it

was good. And God said, “Let the land produce living creatures according to their kinds.” And

God saw that it was good.

Then God said, “Let us make man in our image, in our likeness, and let them rule over the

fish of the sea and the birds of the air, over the livestock, over all the earth, and over all the

creatures that move along the ground.” So God created man in his own image, in the image of

God he created him; male and female he created them.

This is the account of the heavens and the earth when they were created.

iv
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Abstract

This research investigation addresses the problem of routing and simulating swarms of UAVs.

Sorties are modeled as instantiations of the NP-Complete Vehicle Routing Problem, and this work

uses genetic algorithms (GAs) to provide a fast and robust algorithm for a priori and dynamic

routing applications. Swarms of UAVs are modeled based on extensions of Reynolds swarm research

and are simulated on a Beowulf cluster as a parallel computing application using the Synchronous

Environment for Emulation and Discrete Event Simulation (SPEEDES). In a test suite, standard

measures such as benchmark problems, best published results, and parallel metrics are used as

performance measures.

The GA consistently provides efficient and effective results for a variety of VRP benchmarks.

Analysis of the solution quality over time verifies that the GA exponentially improves solution

quality and is robust to changing search landscapesmaking it an ideal tool for employment in

UAV routing applications. Parallel computing metrics calculated from the results of a PDES show

that consistent speedup (almost linear in many cases) can be obtained using SPEEDES as the

communication library for this UAV routing application. Results from the routing application and

parallel simulation are synthesized to produce a more advanced model for routing UAVs.

viii



A Genetic Algorithm for UAV Routing Integrated with a parallel

Swarm Simulation

I. Introduction and Motivation for Unmanned Aerial Vehicle Research

If we knew what it was we were doing,
it would not be called research, would it?

–Albert Einstein

American service men and women have witnessed and contributed to some of the most phe-

nomenal technological advances in history. The invention of wireless radios, modern telephony, and

satellites have changed communication channels from slow inefficient postal deliveries during the

days of the American Revolution to lightning fast electronic message deliveries in the present day.

The invention of the airplane allows us to deploy with almost no notice to hostile areas on the other

side of the globe and neutralize our enemies almost overnight; prior to the turn of the last century,

it would have taken weeks or months to plan, mobilize, and neutralize threats to our American way

of life. Now, in the 21st Century, Unmanned Aerial Vehicles (UAVs) are saving and will continue

to save even greater numbers the lives of brave men and women that would gladly risk their own

lives by engaging enemies across the ‘wild blue yonder.’

By the year 2010, a third of the military fleet may be remote-controlled [50]. With the

continual advances of Artificial Intelligence (AI) methods such as machine learning, the proportion

of remote-controlled fleet will decrease in lieu of Unmanned Aerial Vehicles (UAVs)–‘smart’ planes

capable of flying in a near-autonomous mode with a man-in-the-loop controller only present to

handle exceptional circumstances. Already, the Predator spy plane can cruise at a speed of 84

mph, accomplish a picture perfect landing, and communicate high resolution satellite images and

video feeds in realtime. In addition to realizing the potential of UAVs as a suitable platform for

1



reconnaissance applications, the military’s high level leadership is also realizing their potential for

offensive weapons capability.

During a recent engagement in Afghanistan, a Predator built by General Atomics Aeronau-

tical Systems launched a Hellfire missile and destroyed a Taliban convoy [50], marking the first

time a UAV successfully struck a target with a weapon. By 2010, the unmanned aircraft market

could exceed 6 billion dollars (up 1 billion from 2001). An estimated 3 billion dollars of the Defense

Department’s budget is dedicated to developing and buying UAVs [50]. UAVs are small, quick,

less expensive than their manned alternatives, and can significantly simplify some air campaigns;

UAVs allow commanders to take otherwise unacceptable risks because the worst possible outcome

of tactical air strikes can be nearly vanquished: the loss of human life.

1.1 Current UAV Research

UAV research is the ultimate scientific engineering endeavor. The overall problem imposed by

UAV research is to be able to program a plane with routing and other mission-related parameters,

launch the plane, and confidently assume its safe return with satisfactory mission completion. In

most circumstances, more than one plane is needed to complete the task, and so the problem of

routing a fleet of planes in some type of formation is presented.

Successful mission completion for a fleet of UAVs in even the most limited theaters of war begs

analysis and insight from the spectrum of scientific research. Research endeavors from psychology,

human factors engineering, aerodynamics, electronic engineering, computer science, statistical anal-

ysis, navigation, biology and AI are pertinent among the gamut of others. Routing swarms of UAVs

can be modeled as a control problem, a job-shop scheduling problem, a vehicle routing problem, or

a quadratic assignment problem. Once an abstract model is instantiated from a compilation and

pruning of current research, empiricism, statistics, and fault tolerance become pertinent.
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UAV modeling and routing has recently become one of the predominant applications of ap-

plied swarm intelligence. The rationale is that since flocks of geese, herds of cattle, schools of fish,

colonies of ants, and other biologically inspired models are capable of decentralized self-governance,

researchers and scientists should be able to produce efficient and effective swarm models for commer-

cial, industrial, and military applications that lend themselves to this abstract model. The swarm

intelligence problem is often modeled as a dynamic sensor network that may involve database

transactions; from a communication standpoint, the swarm is indeed a network of sensors commu-

nicating back and forth [40, 59]. Given the tremendous flexibility and scope of swarm intelligence

and routing, the impact of pertinent research impacts the spectrum from the way our ordinary

citizens live their day-to-day lives to the way our military fights its wars.

‘Simple’ UAVs capable of flying and collecting data with sensors are already being constructed

very cheaply as part of university research and are being used as platforms for teaching control,

applied AI, and robotics to students. Figure 1.1 shows a UAV about the size of a briefcase that

Carnegie Mellon University uses for student research projects; it costs approximately $600 USD

and is not difficult to construct [70]. The advent of such affordable technology allows universities

and other educational institutions to make low-cost yet significant contributions to UAV research

that otherwise would not be possible.

Figure 1.1: A inexpensively constructed UAV used by Carnegie Mellon University for teaching
students control theory, artificial intelligence, and robotics.

3



1.2 Research Goal, Objectives, and Approach

Focused and well planned research is an exciting and rewarding opportunity to further one’s

own education and concurrently contribute to a significant needs in the world. Although the

fruition of particular research efforts should be communicated in the most honest and neutral

manner possible, the research process and its results can never be completely bias free. Each

researcher has inherent bias and his or her own semantic network [35] of thoughts and associations

that do influence the research and spur subtle spins on any particular part of the endeavor. Figure

1.2 shows just a few of the associations from a contrived semantic network belonging to an Air

Force Institute of Technology (AFIT) graduate student. Although the best researchers proactively

Figure 1.2: Just one sliver of a fictitious AFIT student’s semantic network.

try to not let their own biases influence the outcome of research, some amount of inherent bias

is inevitable, whether it be in the way a hypothesis is framed, why a particular research topic is

considered important, what constraints are imposed by research funding, the nature of assumptions

made about a particular problem, the rationale for using a particular problem solving approach, or

why a problem is actually even considered a ‘problem.’ Having active awareness of research bias is

an important yet very subtle and often overlooked facet that researchers and research institutions

should periodically remind themselves of from time to time.
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1.2.1 Goal. The overall research goal is to develop an efficient and effective UAV swarm

routing algorithm and to synthesize this algorithm into existing Air Force UAV research in con-

junction with AFIT and the Air Force Research Laboratory Electronic Warfare Sensors Directorate

(AFRL/SNZW) Virtual Combat Laboratories (VCL). Attainment of this research goal and under-

lying supporting goals is measured by successful completion of the following high level objectives:

Objective 1: Formulate, implement, and empirically measure the performance of a swarm

routing algorithm by means of efficiency and effectiveness metrics

Fulfillment of this objective produces an algorithm that is capable of providing a high quality ‘online’

solution to a UAV swarm routing problem. Applications of UAV swarm intelligence initially require

high quality a priori solutions to complex routing problems, and also require that these solutions

be robust to changes in the routing schedule that often occur from a dynamic threat environment,

changes in mission planning, and other factors related to the fog of war.

Objective 2: Analyze, evaluate, and the improve the efficiency of the existing AFIT Swarm

Simulator (AFITSS) as a Parallel Discrete Event Simulation (PDES) and a swarm intelligence

model

Prior to this reearch, the AFITSS exhibits unacceptable parallel performance that has not yet

been satisfactorily explained or improved. It is not able to simulate many more than 100 UAV

swarm members in parallel without unacceptable run times and tremendous parallel computing

inefficiencies. Thus, it must undergo additional parallel performance experimentation and analysis

in order to adequately visualize and simulate large swarms of UAVs in realtime or within an

acceptable delta of realtime. Increasing the fidelity of the simulation is crucial to making an

important contribution to AFRL/SNZW research, and to swarm simulation in general.

Objective 3: Application and in depth analysis of a Genetic Algorithm for online UAV routing

A primary outlet of existing AFIT research involves the AFIT Swarm Simulator (AFITSS), but

the simulation lacks the inherent ability to route from one coordinate to another. Although the

5



simulation does provide a realistic simulation of swarm behavior based primarily on an extension

of Reynolds’ model [53] by Kadrovach [39], the simulation lacks the capability to route the swarm

amongst a series of waypoints. Extending the AFITSS to route swarms is absolutely essential to

simulating realistic Air Force missions involving reconnaissance and bombing sorties, or virtually

any other scenario of interest.

1.2.2 Research Approach. This research decomposes the UAV routing problem into

two primary subproblems: 1) an accurate swarm model that can be successfully routed amongst

coordinates, simulated, and visualized; and 2) a planning system that schedules way points for the

planned mission, handles dynamic routing constraints, scheduling changes, etc.

An effective swarm model must be able to simulate swarm behavior as observed in natural

systems in addition to routing the swarm through a series of waypoints. In order to achieve

parallelism, the swarm model must also be capable of subdividing the swarm and giving each

subswarm some degree of independence. An effective planning system should be able to exploit

the swarm’s ability to divide into subswarms based on an definable objective function such as

maximizing mission success, minimizing damage inflicted, and determining the waypoint sequences.

Measurable attainment of the research objectives is accomplished via an experimentation

suite with specific sub-objectives for each experiment. The AFITSS PDES augments and provides

some of the visualization for this research along with Audit Trail Viewer from AFRL Rome Labs,

NY. Particular emphasis on fusing Kadrovach’s Ph.D research [39] and Corner’s M.S. research [16]

with current literature on routing delivers an integrated UAV swarm routing package that can

be visualized, measured for performance, and compared to other contemporary work. Metrics for

analyzing the research results include comparisons to theoretical analysis, well-known benchmark

problems, and the best results found in the literature.
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1.3 Overview of Thesis

Research is a nonlinear process, and a research thesis is not a sequential outline of the research

effort. Therefore, this document is organized in a way that communicates the effort in clear, com-

plete, and concise terms. This chapter along with Chapter 2 provides an introduction and broad

overview of university level research along with the background for swarm intelligence, routing,

algorithmic techniques, and parallel simulation. Most of the background necessary for understand-

ing modeling concepts, experimentation, and analysis is presented in this chapter, although the

reader’s ability to consult provided references is assumed. Chapter 3 provides a high level modeling

of the routing problem and parallel simulation, and Chapter 4 narrows its focus specifically on the

routing problem. Chapters 5 and 6 relay the experimentation as a suite of 10 experiments along

with the results and analysis that fulfill the research objectives. Finally, Chapter 7 provides con-

cluding remarks, commentary on the completion of research objectives, and directions for future

work.

1.4 Research Sponsorship

This research directly supports the Air Force Research Laboratory Electronic Warfare Sen-

sors Directorate (AFRL/SNZW) Virtual Combat Laboratory (VCL), Wright-Patterson Air Force

Base (WPAFB), Ohio. The VCL “provides Sensors Directorate engineers and scientists with a

high-fidelity virtual network-centric sensor ”workbench” for algorithm development, technology in-

sertion, proof-of-concept demonstration, and ‘system of systems’ experiment so that operators can

see the impact of emerging technology in a synthetic combat environment.” The specific point of

contact at the AFRL/SNZW VCL is Mr. Mike Foster.
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1.5 Summary

This chapter provides an introduction and the motivation for Unmanned Aerial Vehicle re-

search, which is considered by many to be the ultimate scientific engineering application. This

works’s research objectives are presented as the development of an efficient and effective routing

algorithm that can be synthesized into existing Air Force research and visualized via a Parallel

Discrete Event Simulation. This research directly supports the United States Air Force, and in

particular, the Air Force Research Laboratories Electronic Warfare Sensors Directorate Virtual

Combat Laboratory.
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II. Background and Historical Perspectives

“Give me a place to stand,
and I will move the Earth.”

–Archimedes

The advancement of UAV research specific to online routing and parallel simulation is the over-

arching goal of this thesis investigation. Research is an activity in which small incremental steps

over an extended time period eventually become greater than the sum of their parts. Small steps

gradually increase the complexity of models until they either reach fruition or need refactoring; in

either case, the result is progress. This chapter establishes background and historical perspectives

for UAV applications, routing large fleets of vehicles, swarms, evolutionary techniques for solving

hard combinatorial optimization problems, and parallel simulation. Properly leveraging these ele-

ments is vital to the development of an efficient and effective methodology. The following chapters

build upon this foundation by proposing and refining models from these perspectives in order to

provide an instantiated solution model.

2.1 Overview of the Routing Problem Domain

This research involves simulating a swarm of Unmanned Aerial Vehicles (UAVs). The problem

domain for this research is an extension of previous research on the Capacitated Vehicle Routing

Problem (CVRP) as well as the Vehicle Routing Problem with Time Windows (VRPTW) [9,20,37,

43,48,51,62–64]. Since historical approaches to the VRP have involved dissecting the problem into

the TSP and the Bin-Packing Problem (BPP), a brief summary of the TSP and BPP is appropriate

before a discussion of the VRP.

2.1.1 The Traveling Salesman Problem (TSP). The classical description of the TSP

involves minimizing the fitness evaluation for a permutation of cities [2]. A salesman must travel

to each city only one time and return to the starting location. More formally, the objective of the

9



Figure 2.1: An example of a TSP for selected cities from Germany.

problem is to minimize the resulting edge costs for a Hamiltonian circuit of a fully connected graph

representing the TSP. Figure 2.1.1 illustrates the optimal solution for a trivial TSP problem for

cities in Germany. Some variants of the TSP include TSP with Time Windows (TSP-TW) and the

Assymetric TSP (ATSP). The former increases the complexity of the basic problem by associating

a minimum and maximum visitation time for each of the cities, while the latter increases the

complexity by removing the symmetric property of the edges in the graph. In the real world, it is

not uncommon for TSPs to involve both of the previous constraints as well as others. In all, for

any graph G = (V, E), there are exactly |V |! permutations of the vertices. Stirling’s approximation

shows that an upper bound of the problem is then O(nn), where |V | = n [34]. The TSP is shown

to be NP-Complete [30]. Many references in the literature are available for a complete discussion

of NP-Completeness [15, 34].

It is interesting to note that an application of the TSP involves using robotic arms to solder

points on circuit boards, not actually traveling to cities. This is quite reasonable considering that

most circuit boards have thousands and thousands of soldering points, while traveling professionals

seldom travel through more than scores of cities at any given time. The TSP is also applicable
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(a) BPP Problem (b) BPP Solution

Figure 2.2: BPP Example

to UAV swarm routing; a common scenario may be the case where a single swarm of UAVs must

collect sensor data from a number of targets. Minimizing the travel time between locations is

prerequisite to maximizing reconnaissance time.

2.1.2 The Bin-Packing Problem (BPP). The classical description of the BPP involves

minimizing the number of fixed space bins for which a given number of fixed space items are to

be inserted. More formally, the objective is to find a partition of a set of objects subject to an

assignment constraint such that the cardinality of the partition is minimized. The complexity

of the problem is increased if bins and/or items of heterogeneous size are considered. Figure

2.2 illustrates a typical BPP. Much like the TSP, all possible permutations of partitions must be

attempted in order to guarantee an optimal solution, so for only two bins and n objects, (n − 1)!

permutations of partitions of objects exist. Again using Stirling’s approximation, a lower bound of

O((n − 1)n−1) is an upper bound on the time complexity of the problem [34]. The TSP is shown

to be NP-Complete [30].

Bin-packing has applications in both two- and three-dimensional space; common applications

of the bin packing problem involve truck loading, storing objects in facilities, and recycling glass [1].
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2.1.3 The Vehicle Routing Problem. The Vehicle Routing Problem (VRP) is one of the

most common problems in practice and dates as early as organized civilization in the form of goods

distribution and trading. The VRP addresses the issue of how to route a fleet of delivery vehicles

through several circuits of destinations, where each destination requires a specific demand of some

product that is transported via the vehicles. The vehicles start and end routes at one or more

depots, and it is desirable to minimize the total cost of accomplishing the deliveries. This total cost

is a function of the total number of vehicles needed to accomplish the deliveries as well as the total

distance the vehicles travel. The problem is subject to a plethora of constraints including vehicle

types, delivery time windows, minimizing total cost, time travelled or the number of vehicles, not

visiting any destination more than one time, and asymmetric routing. Because the VRP is a ‘hard’

combinatorial problem1 whose complexity exceeds that of other hard problems such as the traveling

salesman problem (TSP), brute force methods are not appropriate. In fact, the largest solvable

instances of the VRP are two orders of magnitude smaller than those of TSP [52]. Figure 2.3

illustrates an ‘easy’ VRP benchmark problem and its proven optimal solution.

The VRP involves both TSP and BPP. In fact, a straight forward approach to the problem

involves first solving the TSP and then applying BPP on the resulting Hamiltonian circuit. This

strategy, known as ‘route-first’, is to route the vehicles first in order to minimize the total distance

travelled and then cluster the delivery locations in such a way as to minimize the total number

of vehicles later. Another strategy, known as ‘cluster-first’, is to cluster the delivery locations

first using the minimum number of vehicles possible and then find the routing that minimized

distance travelled. Research in ‘cluster-first’ strategies has been predominantly more common in

the past twenty years because minimizing the number of vehicles has been deemed a higher priority

constraint than minimizing the total distance travelled. This is not uncommon if one considers

the cost of purchasing additional vehicles in order to meet problem constraints relative to the

1The convention used in this document is that a ‘hard’ combinatorial problem is the optimization version of a
decision problem proven to already be in the class of NP-Complete problems.
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Figure 2.3: Benchmark problem A-n32-k5 and its optimal solution.

cost of purchasing additional fuel and additional manning of vehicles in order to meet problem

constraints. Additionally, ‘cluster-first’ strategies have produced better results than ‘route-first’

strategies, although ‘route-first’ strategies perform well in an asymptotic sense [2].

Future military objectives that involve routing swarms of micro-UAVs, might deem any num-

ber of constraints to be of higher priority than minimizing the swarm size, especially as cost of

manufacturing micro-UAVs decreases and they become an expendable resource. Each particular

routing algorithm like so many other algorithms depends upon the problem domain. It is important

to note, however, that solving both the TSP and the BPP problem optimally back-to-back does

not guarantee an optimal solution to the VRP. In the classical description of the Capacitated VRP,

a fleet of homogeneous vehicles exists with each member of the fleet having a fixed capacity. A

number of locations also exist and each location has some demand for a given item. The objective

of the problem is to minimize the overall cost of supplying the locations via the delivery fleet. The

objective function of the problem widely varies and is specific to the particular application.
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As applied to UAV routing, the CVRP is formulated by the following precise mathematical

description, where L is the set of all targets of interest, V is the set of all UAVs, Q is the set of

traveling costs, G is the set of routes, δ is a distance function, γ is a capacity function, and α is a

demand function:

Definition 2.1. UAV Routing Problem:
Given:
L : ∀liα(li) ≥ 0, i > 0; α(l0) = 0
V : ∀vi γ(vi) = k, k > 0

Compute:
Q : qij = δ(li, lj)
G : gk = {l0

⋃

L ×k L
⋃

l0}

Constraints:
∑

l∈G α(l) =
∑

l∈L α(l)
⋃

l∈G = L
⋂

g∈G = l0

Objective:

min
∑|Q|

k=1 Qk

Given that the VRP is at least as complex as either the TSP or BPP, a lower bound for the

problem is Ω(nn). The TSP and BPP are already intractable problems; adding in the additional

constraints of time windows for each delivery location, heterogeneous vehicle fleets, or a dynamic

delivery environment clearly does not simplify the problem.

2.1.4 Summary of Various VRP Instantiations. Specific instantiations of VRP include

the Multiple Depot Vehicle Routing Problem (MDVRP), the Vehicle Routing Problem with Time

Windows (VRPTW), the Dynamic Vehicle Routing Problem (DVRP), the Capacitated Vehicle

Routing Problem (CVRP), and the Fleet Size and Mixed Vehicle Routing Problem (FSMVRP).

Other variations exist, but these are the most common found in the literature [68, 69].

In fact, it is possible to construct a VRP hierarchy such that the root of the hierarchy is an

instantiation of all of the previous problems. Thus, the previously mentioned problems become

a simplification of the root problem. For example, the CVRP may be expressed as a specific
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instantiation of all of the previous VRPs with time windows tmin = 0 and tmax = k, a single depot,

a homogeneous vehicle fleet, and all deliveries known a priori. For this reason, precisely defining

the problem definition in concise mathematical notation is crucial.

2.1.5 VRP Application To UAV Operations. Consider an environment, however, in

which a given number of locations require a payload of reconnaissance or weapons munition. A

very large heterogeneous swarm of micro-UAVs capable of delivering both the munitions and the

reconnaissance payload exists. Given a large set of these waypoints, threats to avoid, time windows,

a changing threat environment, and the potential loss of members of the swarm along the way,

routing the swarm through the environment is a very complex instance of the VRP. Clearly, finding

good approximation techniques to complex instances of VRP has practical interest for both industry

and military applications. To solve such problems satisfactorily, the appropriate selection of an

algorithm is essential.

2.2 Overview of the Algorithm Domain for the Routing Problem

Having much applicability to everyday commerce and transportation, the VRP has been ap-

proached from nearly every angle possible. Exact approaches, iterative heuristics, meta-heuristics,

and stochastic search have all been applied and with varying degrees of success. Some of the most in-

tense studies have included branch-and-bound techniques, tabu search, and iterative savings-based

heuristics. Metaheuristics such as ant algorithms, genetic algorithms (GAs), and other evolutionary

approaches, however, are becoming common and with much success.

Some specific approaches from the literature include Ant Colony Optimization [29,42], Tabu

Search [61], Evolutionary Strategies [37], parallel approaches [4, 48], Simulated Annealing [20],

problem simplification [75], fuzzy logic [47], and branch-and-bound techniques [52]. Genetic Vehicle

Representation (GVR) [43, 62, 63] is a fairly recent approach with special emphasis on the data

representation. The next section discusses the following facets of evolutionary computation and
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how their relevancy to the VRP: genetic algorithms, artificial immune systems, artificial neural

networks, fuzzy logic, ant colony optimization, and Reynolds’ ‘boids’ research.

2.2.1 Evolutionary Computation. As early as the 1950s, computational scientists began

to apply neo-Darwinian theories to the process of solving problems via Evolutionary Algorithms

(EAs) [5]. Assuming the process of evolution occurred2 and resulted in the creation of complex and

powerful organisms through a process of gradual improvement over many years, they conjectured

that a similar process for approximating solutions to complex problems may work, and so the field

of Evolutionary Computation (EC) was defined3.

Generally speaking, EC and EA approaches capitalize on the good building blocks in partial

solutions that propagate exponentially through many generations until a near optimal total solution

is attained. The conceptual steps to an EA are quite simple. The first step of an EA is to initialize a

population of individuals such that each individual is encoded with a random solutions to a problem.

Individuals from the population recombine and produce offspring with some probability, can be

mutated with some probability, and then applying Darwin’s cliché of “Survival of the Fittest”, only

some number of the fittest individuals survive the process of selection and survive to reproduce in

the next population. This process continues for a given number of generations or until a certain

threshold value is met. The fittest individual existing in the final population then provides the

approximated solution to the problem. The most common forms of EC include Genetic Algorithms

(GAs), Evolution Strategies (ESs), Genetic Programming (GPs), and Evolutionary Programming

(EP) [5]. Early research in the field started with the manipulation of finite state machines with

EP, and the process grew into wider acceptance via ESs in Europe and GAs in the United States.

2Objection to evolution as a scientific truth is reasonable, and the success of EAs as applied to complex optimiza-
tion problems is not supporting evidence for evolution. Interestingly, one need not affirm the theory of evolution in
order to benefit from the robust and powerful problem solving characteristics of EAs. This note is worth clarifying,
since virtually all literature on the subject presupposes evolution as a scientific truth, even though doing so is neither
a necessary nor sufficient condition for demonstrating the success of EAs.

3The actual term ‘Evolutionary Computation’ was not coined until around 1991 [5]
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2.2.2 Genetic Algorithms. GAs were first proposed by John Holland in 1975 [36,72]. The

three features that first distinguished GAs from other EC techniques were the bitstring represen-

tation, the proportional selection operator, and the crossover operator. The crossover operator,

in particular, is what makes GAs distinctive from other techniques [5]. The basic algorithm for

a GA consists of repeating the following steps: (i) initializing a population of solutions at time t,

(ii) evaluating the population with an objective function and scaling to produce fitness values, (iii)

selecting individuals for recombination based upon fitness values, and (iv) recombining individuals

with one another to produce a new generation of individuals at time t + 1. In general, the algo-

rithm repeats steps (ii)-(iv) for some number of generations, although other stopping criteria such

as thresholding functions can also be used.

2.2.2.1 Schema and Good Building Blocks. GAs rely on the ‘Schema Theorem’,

which asserts that when using the proportional selection operator, the number of good building

blocks increases exponentially as the number of generations increases. [72] This approach relies

upon the assumption that ‘good’ building blocks start small and incrementally build larger good

solutions4. Some GA approaches produce a new population of individuals at each generation solely

by recombination, while others produce new populations by recombination as well as allowing

parents from generation at time t to survive into the subsequent generation. The former strategy is

known as (µ, λ), while the latter is known as (µ + λ). Generally speaking, the former produces more

exploration, while the latter produces more exploitation. One must be cautious when using a (µ,

λ) strategy, because good building blocks can be harder to keep from population to population [5].

GAs are conceptually simple, although embedding specific problem domain constraints and

guaranteeing feasible solutions after recombination is usually not trivial. A formal GA adapted from

Bäck that is capable of repairing infeasible solutions is given in Algorithm 1. Repairs to infeasible

solutions need not be explicitly inserted back into the population. Rather, infeasible solutions can

4Acceptance of Schema Analysis as presented by Goldberg [31] exist in the literature and acceptance of the
building block hypothesis is by no means unanimous [67].
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be deterministically repaired and evaluated, while remaining genotypically infeasible. Explicitly

repairing individuals is analogous to Lamarckian evolution, while implicitly repairing individuals is

analogous to Baldwinian evolution [6].

In Lamarckian models of evolution, performance gains from individual learning are mapped

back to the genotype, and thus, can be passed on to its offspring. [6]. In EC, the mapping back to

the genotype that takes place is an explicit repair to an infeasible genotype. Baldwinian models,

however, do not explicitly repair infeasible solutions. Rather, these models cling to the so-called

Baldwin Effect and simply interpret the infeasible solution as a feasible one. Some experiments

have shown that using Lamarckian techniques often result in convergence to local optima, while

Baldwinian techniques are more likely to result in convergence to a global optimum [6].

Data : tmax, constraints: Q = {q1, ...qk}, preplace

Result : P(tmax) := {~a1(tmax), ..., ~aµ(tmax)}

function repair: ζ(~a′′
k

(t)) :
begin

if
Pm

i=1 π(qi, ~a′′
k (t)) = 0 then

return ~a′′
k (t);

end

if (RAND[0,1] <= preplace) then

~a′′
k

(t) := η(~a′′
k

(t));

return ~a′′
k (t);

else

return η(~a′′
k (t));

end

end

begin

t:=0;

initialize: P(0) := {~a1(0), ..., ~aµ(0)} ∈ Iµ, where I = {0, 1}l;
while t < tmax do

recombine: ~a′
k(t) := r′

{pc,z}
(P (t))∀k ∈ {1, ..., µ};

mutate: ~a′′
k (t) := m′

{pm}
(~a′

k(t))∀k ∈ {1, ..., µ};

evaluate: P ′′(t) := {~a′′
1 (t), ..., ~a′′

µ(t)} : {Φ(~a′′
1 (t)), ..., Φ(~a′′

µ(t))}, where Φ(~a′′
k (t)) = δ(f(ζ(Υ(~a′′

k (t)))), P (t − ω));

select: P (t + 1) := s(P ′′(t)), where ps(~a′′
k (t)) = Φ(~a′′

k (t))/
Pµ

j=1
Φ(~a′′

j (t));

t := t+1;

end

return P(t)

end

Algorithm 1: GA Algorithm with repair function

An alternative to repairing infeasible solutions due to the complexity of handling all of the

violated constraints is to assign a penalty to them. Assigning a penalty to infeasible solutions is

a design choice that relies upon the assumption that infeasible solutions have lower fitness values

that infeasible solutions, and the search progresses toward feasible solutions. Optimal solutions,

in general, lie on the boundary between feasible and infeasible solutions. Therefore, one must
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Table 2.1: A brief summary of the selection mechanisms discussed

Type Time Complexity Pressure Advantages Disadvantages

Roulette Wheel Θ(n) Relatively high Schema analysis applies ‘Super-fit’ individuals can dominate

SUS Θ(n) Relatively high Schema analysis; efficient; hedges
against ‘super-fit’ individuals

‘Super-fit’ individuals still can dom-
inate

Tournament Θ(q) ∝
q
n

Scaling Invariant; Implementation;
Convenient for parallel implementa-
tion

Loss of diversity; population repre-
sentation

Rank-based O(n · lg(n)) Low Scaling Invariant; Simplicity Fitting population to distribution

cautiously choose penalty functions. Penalties too lenient result in exploration in the very large

space of infeasibility, while penalties too severe result in the search stalling in local optima. Various

penalty functions include static, dynamic, and adaptive penalties. [6].

2.2.2.2 Selection Operators. Common selection operators include proportional se-

lection, tournament selection, and rank-based selection [5]. The selection mechanism employed

is a significant design decision when implementing a GA. Three of the most common selection

mechanisms are discussed and summarized in Table 2.1.

Proportional, commonly known as ‘roulette-wheel’ selection, involves choosing individuals in

a population for recombination based upon their proportional fitness to one another. Usually, this is

accomplished by means of calculating the overall fitness of the entire population and then comparing

a particular individual’s fitness to the population’s overall fitness. Conceptually, each individual

has a slice of a roulette wheel. The roulette wheel is spun, and the individual the wheel lands on is

chosen for recombination. Individuals with very high proportional fitness commonly dominate the

selection process when n separate spins are accomplished. A method entitled Stochastic Universal

Selection (SUS) is a means of providing for equal representation even in the presence of ‘super-fit’

individuals [5]. In SUS, if k individuals are required for recombination, a single spin of the roulette

wheel is accomplished and individuals are chosen based upon k equidistant pegs surrounding the

roulette wheel. This method results in less-fit individuals still having a uniform probability of being

chosen, whereas k consecutive spins may not. Its time complexity is O(n) and one source cites it

as being ‘optimally efficient’ [5]. Still, there is relatively high selection pressure even with SUS in

proportional selection. An appropriate scaling function is another crucial factor for proportional
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selection since individuals chosen for survival into the next population can have very similar fitness

values. Population initialization is normally assumed to be random with proportional selection.

Tournament selection involves randomly selecting individuals q at a time. The individual

with the highest fitness among the q of them is chosen for recombination. Tournament selection

has the advantage of being implemented very efficiently and the time complexity of only O(n) [5].

Tournament selection is scaling and translation invariant. Therefore, scaling methods as used in

proportional selection are not needed. Population initialization is normally assumed to be Gaussian-

distributed initial population [5]. Tournament selection’s selection pressure is proportional to the

tournament size q. Given a population of n individuals, the selection pressure increases as q
n

increases.

Rank-based selection involves assigning selection probabilities based upon ranking individuals

according to a probability distribution. An advantage of rank-based selection includes its very low

selection pressure. Unlike proportional selection, ‘super-fit’ individuals cannot lead to premature

convergence. The most fit individual receives the same rank each time. The least fit individual

receives the same rank each time as well. This property also has the advantage of being advanta-

geous when an objective function is hard to define. A difficulty with rank-based selection is defining

which probability distribution to use. Oftentimes, the fitness landscape and desired solution char-

acteristics are unknown, so assigning a distribution is as difficult as obtaining a good solution to

the problem.

2.2.3 Artificial Immune Systems (AISs) and Artificial Neural Networks (ANNs). While

AISs have primarily been used in the application areas of intrusion detection and optimization, they

also are appropriate for use as a pattern recognition application. Pattern recognition via ANNs and

AISs is vital component of real-time UAV reconnaissance applications and has also been successfully

applied to optimization problems [22, 45, 46, 55]. These concepts are a logical extension and next

step to Corner’s experiments in applying a parallel swarm simulation to target recognition [16].
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A particular application of pattern classifiers with respect to UAVs is with regard to identi-

fying hostile targets and identifying suspicious objects. For example, a swarm of UAVs with built

in pattern classifiers might train on several patterns of known enemy data such as the profile of a

partially hidden tank in the desert. Later, while the swarm is en route on a reconnaissance mission,

can use these patterns for identifying suspicious areas. ANNs and AISs provide some flexibility, so

the pattern encountered by the swarm need not match the training pattern exactly. These meth-

ods have the advantage of being potentially as successful as the training data; however, the lack of

sufficient training data is a disadvantage.

2.2.3.1 ANNs. One work by Dasgupta compares and contrasts Artificial Neural

Networks (ANNs) and Aritificial Immune Systems (AISs) [22]. Since ANNs have been used exten-

sively for pattern recognition, they provide a good benchmark application with which to make a

comparison. Both ANNs and AISs are biologically inspired mechanisms.

ANNs are inspired from the neurons of the nervous system. Conceptually, ANNs are multiple

layers of perceptrons. Each perceptron receives a series of inputs and if the sum of these inputs

exceed a threshold defined by a thresholding function, the output of the perceptron fires, which is

in turn fed into other perceptrons. After some number of layers, the network produces an output

pattern. A gradient descent technique is commonly used to designate how ‘incorrect’ the network’s

output was for the given pattern and a backpropagation technique gradually adjusts the connections

between the perceptrons. Given enough training examples, the network is expected to produce

the expected output for all of the training examples. Once the network is trained, the network

Figure 2.4: A perceptron
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can be tested with additional training examples that have been previously unseen and expected

to produce the desired output. Various types of ANNs exist; a few of the design decisions when

building an ANN include: learning online or offline, whether or not to be recurrent, the thresholding

function to use, the number of hidden layers to use, and the particular backpropagation technique

to employ [46, 55]. Note that ANNs are deterministic mechanisms that produce a global behavior,

generalized from sets of independent training data samples.

2.2.3.2 AISs. AISs are reminiscent on the concept of the body producing antibod-

ies in response to antigens. The body has three primary layers of defense: the skin and mucus

membranes, innate immunity, and adaptive immunity. AISs were produced from the adaptive im-

munological level. The adaptive immunological level’s model primarily involves four types of cells:

helper T cells Th, killer T cells Tk, suppressor T cells Ts, and B cells B [21].

To illustrate the role each type of cell plays, consider the following scenario: an antigen

invades the body and infects a cell. The cell recognizes the antigen as being foreign to the body, and

although infected, it is capable of presenting a part of the antigen on its surface as a signal to other

cells via immunoglobin receptors. Th cells near the infected cell also recognize parts of the antigen

on the cells surface and produce lymphokines, signals that tell B cells to proliferate and bind to

particular sites of the antigen surface called epitopes. The activated B cells can then do two things:

1) secrete antibodies that can bind to the recognized antigens neutralize them or identify them to

phagocytes, macrophages, or Tk cells and 2) undergo the processes necessary to produce memory

cells that result in the mutations necessary to recognize the antigens in subsequent encounters.

Macrophages and Tk cells kill the infected cells, which cannot be repaired and would otherwise

continue the spread of antigens. Ts are involved in the process by acting as robust self-detectors–

cells that recognize self cells that Th cells may otherwise identify as antigens. Conceptually the Ts

cells prevent false alarms.
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2.2.3.3 Application of Fuzzy Logic to AISs. The robust and distributed nature of the

immune system model makes it especially suitable for anomaly detection, and it has been applied

extensively to the field. An application of AISs that has received significantly less attention, how-

ever, is the application of binary pattern recognition. The AIS model basically involves identifying

and distinguishing between ‘self’ and ‘non-self’, so using AISs for identifying reconnaissance im-

agery as friend or foe seems appropriate [22]. Additionally, fuzzy logic can be applied which allows

members of sets to belong partially to more than one set with varying degrees of membership [45].

The application of fuzzy logic using an immunogenic approach seems appropriate for target

recognition in theaters of war. Swarms of UAVs might have certain ‘innate’ abilities to recognize

general ‘antigens’ such as other unidentified flying objects in the air and large convoys of adversarial

forces. The adaptive abilities to train on and recognize specific ‘antigens’ in a theater such as missile

silos, identified enemy headquarters, and weapons production facilities. Note that the suppressor

Ts cells might also play an interesting role by being trained to recognize hospitals, religious centers,

and other neutral areas. Clearly, the areas of interest in such scenarios is very small compared to

the entire theater area, and fuzzy logic can indicate the degree with which a specific venue belongs

to either a set of self or a set of non-self.

2.2.3.4 Application of Anomaly Detection using Pattern Classifiers for UAVs. Iden-

tifying antigens for use in an AIS might first involve generating unique signatures for each of the

known threats into training data sets, training the swarm on the data sets, and then testing the

trained swarm on previously unseen data sets. Given a small enough threshold on the margin

of error, the swarm can then be deployed into areas of interest with expectations of reasonable

behavior.

Various immunogenic libraries for different theaters might be developed and loaded into

swarms of UAVs on demand or as appropriate. For example, one particular data set might be

of a desert landscape with various types of current generation weaponry, existing machinery, and
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convoys of vehicles, while another data set may be of a jungle or arctic landscape with similar

features. Through a satellite uplink, the same swarm of UAVs might monitor very diverse parts of

the world or countries with diverse landscapes without landing and manually swapping the data

sets. This approach might also have the benefit of reducing the size of the swarm since not all data

sets have to reside on each UAV.

Still another possibility involves near real-time uplinks between swarms of UAVs. In this sce-

nario, multiple swarms of UAVs are airborne and concurrently conducting reconnaissance missions,

while one highly specialized swarm might sweep through an area with high resolution imagery pe-

ripherals and generate training data sets. These data sets are downloaded to a massively parallel

machine on the land for the generation of pattern recognizers, and then the pattern recognizers are

uploaded to the reconnaissance swarms or a killer swarm that might use these data sets to sweep

through the area and provide air strikes or some form of close air support.

Dasgupta indicates ANNs and AISs probably produce pattern classifiers equally well for many

types of problems [22]. Therefore, other characteristics might be considered to determine if one is

more appropriate than another for this particular application. ANNs are deterministic, while AISs

are probabilistic. Both methods can be trained a priori to evaluation with test data sets, but both

models also can learn online. ANNs classify patterns by training the network on the data sets,

while AISs recognize patterns in the complement space as novel (self and non-self space must have

been previously calculated).

Additionally, AISs can classify patterns to belong with varying degrees of membership to more

than one set. ANNs lack this ability. Perhaps the most important advantage of the AIS model

over the ANN model is that a decision in an ANN is a global action that requires computation on

behalf of the entire ANN, while a decision in an AIS is decentralized local decision. This difference

might enable swarms of UAVs using an AIS model to generate quicker responses to changing threat

environments than with an ANN model. Additionally, the design of most ANNs can be a tedious
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Table 2.2: Aspects of ANNs and AISs

AIS ANN
Probabilistic Yes No
Training Online and offline training
Classification Method Additional training Self/non-self space or fuzzy logic
Decisions Global Local

process that requires much tailoring. Some ANNs cannot classify patterns with an infinite number

of training data because of an inadequate number of hidden layers, thresholding function, or initial

random weightings.

AISs and ANNs provide two possible approaches to pattern and target recognition for UAV

reconnaissance applications. Ant Colony Optimization is yet another model inspired from a natural

system–the foraging behavior of ants as observed in their natural habitat. It offers a biologically

inspired model for routing UAVs.

2.2.4 Ant Colony Optimization. Ant Colony Optimization (ACO) models became popular

after Dorigo published his Ph.D dissertation on the topic in 1992 [24]. With his introduction of ‘Ant

System’, many other researchers became interested in the idea of ants and collective intelligence

systems such as insect colonies. ACO is an interesting model because it has been applied to TSP

and various routing problems in previous research although the totality of its research is quite

extensive. A few applications of ACO include water distribution [74], logistic systems [29], graph

coloring [18], BPP and Stock Cutting Problems [42], TSP [28], telecommunication network load

balancing strategies [12, 57], routing problems [58], and optimization problems [7] among others.

Being highly parallelizable, various strategies for parallelization have also been introduced [11].

The ACO model mimics the foraging behavior of ants. As an ant travels from its nest to a

foraging location, it leaves a trail of pheromone that other ants can detect. These ants follow the

existing pheromone trail based on several factors, some of which include the relative angle between

the nest and the foraging location and the intensity of the pheromone trail. The more ants that

follow a pheromone trail, the stronger the trail’s intensity becomes. If very few ants follow a trail,
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the trail is likely to evaporate to such a degree that it can no longer be detected and is less likely

to be followed. Bonabeau [25] describes a binary bridge experiment in which ants were separated

from a foraging location by two paths, with one path being longer than the other. Ants that left

the nest and returned first must have taken the minimum path both ways and resultantly the most

pheromone was concentrated on the shortest path in the shortest amount of time. As a result,

subsequent ants are more likely to follow this trail both ways because its intensity is stronger than

any other possibility. After a very short time period, nearly all ants travel along the shortest path.

A simplified model of foraging behavior in general may be stated as follows:

Definition 2.2. There exists a set of ants A, a set of locations L to include a single nest ln and a

single foraging location lf , and a set of paths P 3 pij derived from L × L. There exists a bijection

from the set Q 3 qij on P that represents the cost (usually distance) between any two locations. For

a given number of iterations, ants start at ln and move in lock-step toward completion of a cycle that

includes lf . For example, while in location li, an ant chooses location lj according to a probabilistic

transition function [25] that compares the intensity of the pheromone trail τij relative to the cost

of taking the path, qij .
5 In order to prevent the ant system from prematurely converging on a

suboptimal solution, the pheromone evaporates by a factor of ρ after each iteration. The algorithm

terminates after a given number of iterations.

2.2.4.1 Using ACO as a Swarm Routing Optmization Technique. The formulation of

ACO can map cohesively to many problems formulated with graphs as the primary data structure,

including the VRP [11,29,47,58]. ACO as an algorithmic basis for solving VRP instances might be

especially useful for the Dynamic VRP, because ACO models have been shown to quickly converge

to other good solutions when disruptions occur to the current best solution [25]. A shortcoming

of ACO as an optimization technique for swarms of UAVs is that it is a coarse grained search and

5In some applications such as the Traveling Salesman Problem (TSP), it is necessary to complete a Hamiltonian
cycle or meet other related constraints related to visitation of locations. Typically, an auxiliary memory M 3 M ⊆ L

is introduced for each ant. At the beginning of an iteration, M = L. After each move, M is updated by M = M − lj ,
where lj is the current location of the ant.
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has not been shown to perform competitively with other techniques for TSP instances of 30 cities

or greater.

The most straightforward approach for applying ACO to the VRP involves assigning a proper

subset of Y = Li ×Di to ant ai from A [11] and initially assigning an ant a capacity of items given

by cANT An ant’s objective after being ‘loaded’ to its capacity and assigned a set from Y 3 yk is

to minimize the total cost of completing a circuit given by the li terms of the assignment.6 Once

an ant has visited a location li, the tuple {li, di} is removed from its ‘memory’ m and location

li is added to its solution g. Ants transition amongst delivery locations until their assignment

yk = ∅. If at any time before a circuit is completed, ∀di ∈ y > cANT , the ant immediately returns

from location li to the depot at a cost of qi,depot, refills its capacity to cANT , and then continues

deliveries, which may or may not immediately start back at li.
7 Once all ants have completed their

circuit, only the ant that has generated the shortest total circuit, gmin contributes a quantity of

pheromone to all paths on the minimal path travelled8 A generalization of this update is given by

equation 2.1. The algorithm terminates after a given number of iterations and the set of circuits

returned by the final iteration is the solution returned by the algorithm.

τij(t) = (1 − ρ) · τij(t) + τε (2.1)

2.2.4.2 Explicit Mapping to Search Constructs. A coarse mapping to abstract search

constructs is useful for mapping ACO techniques to the swarm routing problem.

6This initial reduction is helpful because ACO cohesively maps to ‘ordering’ problems such as the TSP, whose
problem domain is essentially the same as the one ants face in nature.

7Because the VRP as presented involves homogeneous delivery items, loading the delivery items poses no ad-
ditional complication. Should the delivery items be heterogeneous, however, it would be necessary to process the
loading of items at each return to the depot via the Bin Packing problem, another NP-Hard problem

8A plethora of variation on this pheromone update have been presented by various authors. The most common
variations include allowing all ants to update the pheromone trail or allowing only the k best ants to contribute
to updating the trail. In either case, the update may or may not be qualitatively based on their circuit traversed
and/or weighted proportional to that quality.
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• Set of Next State Candidates–For each iteration of the algorithm, the set of next state can-

didates includes all possible permutations of customers assigned to ants: Candidates =

∑antmax

i=0 {anti × (L ×m L)}

• Next State Generator–The next state generator randomly assigns a proportional number of

customers to each ant: Candidates =
∑antmax

i=0 {anti × (L ×m L)} 3 m ∝ |L|
|A|

• Feasibility Function–The feasibility function refines Candidates to ensure that no two cus-

tomers are assigned to the same ant:

Candidates =
∑antmax

i=0 {anti × (L ×m L)} 3 ∀i∀j[¬∃{antj , li}, {antk, li}]

• Selection Function–The selection function selects a valid mapping from Candidates, where

Candidates is generated stochastically.

• Solution Function–The solution function determines when all deliveries have been met for all

customers: ∀ant ∈ Candidates∀y ∈ Y, yant = ∅

• Objective Function–The objective function evaporates pheromone according to equation 2.1.

The objective function returns the final iteration’s solution.

ACO techniques almost always enhanced via a local search technique specific to the problem

domain. For example, ACO-TSP provides much better results using a local search procedure such

as 3-opt [25] than without it, and ACO-Bin Packing provides must better results with combined

with a form of hill climbing than without it [42, 68].

2.2.5 Reynolds’ Model. In 1987, Reynolds produced a simple model geared toward com-

puter graphics that illustrated flocking behavior to a very realistic extent [53]. This model is

conceptually simple, and no discussion of swarm behavior or flocking is complete without it. It

places three primary constraints on the movement of each swarm member: separation, cohesion,

and alignment. Figure 5(b) shows an illustration of this model as presented on Reynolds’ website

at http://www.red3d.com/cwr/boids/
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(a) Separation, Cohesion, and Alignment (b) A swarm member’s line of sight

Figure 2.5: A neighborhood and the components of the model.

Kadrovach’s Ph.D research involves a centralized swarm model that is an extended imple-

mentation of Reynold’s model. Corner’s research parallelized this model. Chapter III discusses

research by Kadrovach [39] and Corner [16,17] in detail, because it is part of the infrastructure for

the current AFIT Swarm Simulator.

2.2.6 Deterministic Techniques. Deterministic techniques have received the vast majority

of attention for solving the VRP. Promising branch-and-bound techniques which formulate the

VRP as a Lagrangian constraint problem demonstrate impressive results [52] and much success

has been obtained by Taillard with tabu search [4,61]. Deterministic approaches often rely heavily

upon excellent construction heuristics, however, and these heuristics can be difficult to formulate

because of problem specifics. In general, the construction heuristics attempt to group locations into

sets and then provide a mechanism for ordering the set. The additional concerns of dimensionality

must also be considered when choosing a deterministic algorithm. Historically, most benchmark

problems having reported results with deterministic techniques are of relatively modest size.
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Perhaps the first popular constructive method that relies upon a gradual construction is the

well-known Clarke-Wright Savings Heuristic which dates back nearly half a century. In general, this

heuristic works by first constructing n independent tours for a problem of size n. Tours can then

combined iteratively according to an explicit ‘combine rule’ that preserves solution feasibility. The

tours with the greatest ‘savings’ are combined. The algorithm as originally presented is found in

the original paper [14]. This heuristic can be proven to construct a feasible solution to the CVRP

in O(n2lg(n)) time [41], but does not make any guarantees on solution quality.

2.3 Parallel Discrete Event Simulation

Primary reasons for Parallel Discrete Event Simulation (PDES) include an enormous cost

reduction in research and development and reduced execution time for models that might otherwise

take very large finite time periods to execute. Fujimoto cites at least three other reasons why PDES

is important. These reasons include allowing geographically distributed computers to participate

in simulation, integration of simulators that execute on heterogeneous architectures, and increased

fault tolerance [27].

2.3.1 Time in PDES. Perhaps the most fundamental concept in a PDES is the notion

of time. Time can be regarded in at least three distinct ways: 1) Physical Time, 2) Simulation

Time, and 3) Wallclock Time. Physical Time refers to the actual time in the physical system being

simulated, which may stretch anywhere from nanoseconds to thousands of years. Simulation time

refers to the totally ordered set of values where each value represents an instant of time in the

physical system being modeled. Simulation Time (Ts) and Wallclock Time (Tw) can be derived

from one another via Equation 2.2.

Ts = W2S(Tw) = Tstart + Scale(Tw − TwStart) (2.2)
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Wallclock time is the total time that the simulation has executed from its beginning till the present

moment [27]. A clear understanding of each notion of time and what each time represents is

fundamental to PDES.

2.3.2 Scheduling. At the heart of scheduling events in PDES is the local causality con-

straint. A PDES obeys the local causality constraint if and only if Definition 2.3 is satisfied.

Definition 2.3. Local Causality Constraint - each logical process may only process events in non-

decreasing time stamp order.

Intuitively, the local causality constraint seems reasonable. In order to maintain a notion

of time, events must be processed logically from start to finish. Various techniques allow for

satisfaction of the local causality constraint. Four of the most common are of particular relevance.

2.3.3 Conservative Techniques. Conservative techniques address the synchronization

problem by processing events only when doing so is considered ‘safe.’ In other words, events

containing a time stamp marked t are only processed by a given process p when p can determine

that it will not receive any other event with time stamp of less than t. Conservative techniques are

designed such that no rollbacks can occur. The most common conservative techniques include First-

In-First-Out Queues, the Chandy/Misra/Bryand Algorithm and the Demand Driven Approach

[27]. The prevalent shortcoming of conservative techniques is their inability to fully exploit the

concurrency that is available in the simulation application [27]. Any possible event that might

cause a violation of the local causality constraint must be prevented; thus, the simulation does

not execute for some applications as fast as with optimistic techniques, which allow local causality

violations but provide recovery mechanisms.

2.3.4 Optimistic Techniques. When applicable, optimistic techniques are often desirable

over conservative techniques. For example, consider the microprocessor pipeline design that pro-

31



cesses events ‘ahead of time’. Such designs can result in tremendous performance improvements.

Three of the most common optimistic techniques include [27, 44]:

• Jefferson’s Time Warp

• Breathing Time Buckets

• Breathing Time Warp

Jefferson’s Time Warp processes events optimistically. Whenever a simulation object receives a

message with time stamp less than a time stamp of a message already processed, a ‘rollback’

occurs. The rollback restores the simulation object’s state to the time stamp of the message that

caused the rollback. Simply rolling back the process to a state at a previous time does nothing to

nullify cascaded messages that have been sent out by the process. For example a simulation object

at time t + 10 receives a message that causes it to rollback to time t. All of the messages that the

object passed in the 10 time cycles that were rolled back must be nullified. Jefferson’s Time Warp

elegantly handles the situation by having the object that ‘rolled back’ send anti-messages to nullify

messages which are not longer valid. Anti-messages cascade if necessary.

A subtle shortcoming of Jefferson’s Time Warp is that it does not define the event horizon–

how far ahead the simulation should process messages. An illustration of this shortcoming is

evident from a scenario in which events are processed optimistically very far ahead and then a

straggler message causes an explosive amount of cascading rollbacks. If such events happen too

often, the simulation’s performance will suffer because communications channels can be saturated

with anti-messages.

The Breathing Time Buckets technique addresses the problem encountered by Jefferson’s

Time Warp by defining an event horizon as some time thorizon such that thorizon = t+∆tbucket. In

other words, events are only optimistically processed up until a point at which the event horizon

stalls and waits for the Global Virtual Time (GVT) of the simulation to reach thorizon. Conceptu-

ally, the optimistic processing is ‘bucketed’ into groups. The advantage of Breathing Time Buckets
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is that excessive rollbacks do not occur. Still, on the other hand, the simulation cannot fully exploit

the concurrency available to it.

Jefferson’s Time Warp is computationally risky, while Breathing Time Buckets can be too

conservative. Breathing Time Warp attempts to address the opposing characteristics of Jefferson’s

Time Warp and Breathing Time Buckets by combining the two into a new synchronization process

that hallmarks each of their strengths [44]. In Breathing Time Warp, events are initially processed

optimistically with some level of risk Nrisk. Once the number of optimistically processed (but

uncommitted) events get beyond Nrisk, Breathing Time Buckets takes effect until the GVT is

updated such that more events can be optimistically processed. Clearly, defining the parameter

Nrisk is critical to successful operation of Breathing Time Warp.

Corner’s M.S. Thesis research applied BTW via the Synchronous Environment for Emulation

and Discrete Event Simulation (SPEEDES) libraries to the AFITSS but with irregular results and

ultimately no speedup occurring. Chapter 6 contains analysis the specifically compares conservative

and optimistic techniques with regard to that particular application.

2.3.5 Parallel Computing Metrics.

2.3.5.1 Amdahl’s, Gustafson-Barsis’s, and Sun-Ni’s Laws. At the heart of parallel

computing is the ratio of communication time to calculation time ( tcomm

tcalc
). This ratio describes how

much processing occurs on a CPU compared to the time it takes to communicate between CPUs in

a parallel execution. Three ‘laws’ in particular are of interest with regard to this ratio: Amdahl’s

Law, the Gustafson-Barsis’s Law, and Sun-Ni’s Law.

Amdahl’s Law makes the case for fixed size speedup. This conjecture states that speedup

saturates and efficiency drops as a consequence of holding the problem size constant and increasing

the number of processors. In other words, it implies that diminishing returns occur for speedup

simply by increasing the number of processors. The equation for Amdahl’s Law is given by Equation
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2.3, where P represents the parallel processing time, and S represents the best possible serial

processing time. For this particular application, analysis with Amdahl’s Law is straight forward.

To summarize, various problems of fixed size N (number of UAVs in the swarm) can be tested

for increasing numbers of increasing processors. More thorough analysis of Amdahl’s Law is found

in [33].

Speedup =
1

1 − P + P
S

(2.3)

Gustafson-Barsis’s Law circumvents Amdahl’s Law by increasing the problem size as the

number of processors increase. It exploits the ratio between the portion of serial code in the

problem and the problem size. An excellent explanation of this law is given by Thiébaut [66].

Essentially, it requires carefully decomposing the parallelization such that the serial portion and

the parallel portion of the problem to a value of one unit of time–scaling up the problem to fit the

machine. This conjecture too can be applied to the current application of this research by increasing

the problem size N as the number of processors increases. In this formulation, Rs represents the

portion of code that is serial.

Speedup = N − (N − 1)Rs (2.4)

Sun-Ni’s Law is a generalization of the previous two conjectures. It states that making all

data accessible by all processors, using all available memory space, and increasing memory space

as needed results in nearly ideal speedup [60]. Without a shared memory system (which would be

ideal for this work), this metric may not be possible to exploit.

2.3.5.2 Speedup, Efficiency, and Isoefficiency. Other relevant metrics for any PDES

include speedup, efficiency, isoefficiency, and scalability. These metrics give insight into the theoret-

ical improvements that are gained by parallelizing a serial algorithm. It is not necessarily the case

that parallelizing an algorithm results in improvement. It is certainly not the case that parallelizing
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beyond an additional number of processors produces improvement. These metrics algorithm the

various ‘laws’ described provide the theoretical basis of what one can expect when parallelizing an

algorithm.

Speedup is given by Equation 2.5 and can be measured by comparing serial runs to parallel

runs of the simulation. In general, theoretical analysis with Amdahl’s Law provides the baseline

with which to start analysis. In most cases, it is possible to achieve speedup beyond that which

Amdahl’s Law provides by using techniques gleaned from Gustafson-Barsis and Sun-Ni’s research.

Calculating speedup can be as simple as recording the wallclock time to run an experiment on a

series of two or more processors and calculating the ratios of these times to the serial run. Speedup

eventually plateaus and then begins to decrease when communication inefficiencies outweigh the

additional calculation from the additional processors.

Speedup =
Ts

Tp

(2.5)

The efficiency equation is closely related to speedup equation and conceptually describes

how much each processor in a parallel operation is being used. Equation 2.6 shows that efficiency

(E) can be defined as the ratio between the serial implementation in comparison to the parallel

implementation multiplied by the number of processors used in the parallel implementation. The

measure of efficiency is very much dependent upon the problem decomposition.

E =
Ts

pTp

(2.6)

Isoefficiency provides a metric that relates how to keep the efficiency of the simulation fixed

while increasing the number of processors. The standard expression for isoefficiency is given in

Equation 2.7, where W is the problem size, To is an overhead function, and K is a constant

depending on the efficiency to be maintained. In short, isoefficiency expresses the relationships
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between problem size, an overhead function, and the number of processing elements. It is desirable

to keep the efficiency fixed as the number of processors increases [33].

W = KTo(W, p) (2.7)

2.4 Summary

This chapter provided the pertinent background information relevant to routing swarms of

UAVs. Because the problem of routing large swarms of UAVs can be instantiated as a VRP,

an overview of the VRP along with its related variants and benchmarks is presented along with

historical approaches to solving the problem. A particular emphasis on evolutionary computational

techniques relevant to routing swarms of UAVs is mentioned to include Genetic Algorithms, Ant

Colony Optimization, and Artificial Immune Systems. Background on swarm dynamics and parallel

simulation is also presented. An understanding of these concepts provide the basis for the following

two chapters, which present the modeling process for routing swarms.
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III. Conceptual Design and Modeling for UAV Swarm Routing

If in other sciences we should arrive at certainty
without doubt and truth without error, it behooves us

to place the foundations of our knowledge in mathematics.
–Roger Bacon

Effective design and efficient modeling are prerequisites to the computational fruition of any

scientific endeavor. No meaningful model can exist apart from a sound design. Desirably, a non-

functional requirements specification identifies the specific scope and features of a project, and a

sound design produces a detailed conceptual model that satisfies the requirements specification.

This chapter outlines some generic design and modeling concepts and applies these concepts to

the routing problem of large swarms of UAVs. Additional issues such as how to embed particular

problem constraints into the model and routing algorithm are also addressed.

3.1 Overview of Design and Modeling

To design something is to conceive or systematically fashion it in the mind. Design is a

creative and non-algorithmic process, and a good one produces a precise model [10]. A model is an

encapsulation of some slice of the real world within the confines of the relationships constituting

a formal mathematical system [13]. Because any given element of reality cannot ever be modeled,

various constraints are an essential part of the formal system because they define the boundaries for

which the model holds. A ‘good’ model characterizes a system with a desired degree of accuracy,

and thus, enables accurate predictions of the natural system in consideration to be made.

Micro-UAV design is particularly interesting because they require rather unique design char-

acteristics and must succumb to the laws of physics to high degree of fidelity. Available technology

naturally influences these design considerations; the physical size of available technological devices,

construction costs (especially if custom hardware is necessary), and the impact of these individual

components on the overall aerodynamics of a UAV are just a few of the elements to analyze. For
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example, a requirements specification for a UAV might require that it stay airborne and continually

collect sensor data for many days at a time. A design consideration must then address whether or

not a custom built ultra-dense storage device for a UAV is within budget. If it is within budget, it

must be able to fit in the hull of the UAV and have a benign effect on the aerodynamic design of

the UAV.

3.2 UAV Simulation

A simulation is much like a black box in the sense that from a particular vantage point,

some portion of reality is modeled and behaves as the model’s design indicates that it should1.

An adequate UAV simulation must consider several components in addition to the actual UAVs

themselves, and there are several ways to decompose the space. A straight-forward approach to

identifying the components produces at least the following items of interest:

• individual UAV characteristics

• swarm topology and size

• communication protocol and its scalability

• routing algorithm

• constraints from physics

• grid-mapping and spatial characteristics

A high fidelity near real-time simulation, efficiency is crucial, and thus, each of these elements

have at least some degree of interdependence on the others. For example, modeling UAVs as point

masses could ease the computational burden of calculating updates to position, but the effects of

1Emulation should not be confused with simulation. Emulation is more of a white-box approach which produces
the expected input-output mappings by actually mimicking the internal workings of a system. For example, a
simulation of a storage disk might simply return a byte array for a particular sector of a disk when prompted in a
black box approach. An emulation of a storage disk, however, would require some degree of mechanical modeling to
include the internal spinning of the disk, the seeking of the read head, and the reading of a sector before returning
a byte array with the desired values
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Table 3.1: Simulation Design Considerations

Hardware Platform Software Platform Development Tools

Num of CPUs Threading Systems Programming Languages
CPU Speed Interprocess Communication Scriping Programming Languages

CPU Memory Existing Software Libraries Development Environment
CPU Cache CPU Scheduling Debuggers

Amount of Persistent Storage Memory Management Versioning Management
Disk Read/Write Speed Virtual Memory Programming Language Documentation

Backplane between CPUs Communications Interface Compilation Tools
CPU Comm Topology Deadlock Handling

NIC Buffer Size Security

this simplification would be almost unnoticeable if an environment with myriad negligible forces

and constraints act on the UAVs. It is interesting that the fidelity of the simulation need not depend

on the most accurate model of reality as could be described; rather, the fidelity of the simulation

depends on the accuracy of reality proportional to the level of design.

3.2.1 Hardware-Software Interaction. Another acute facet of a UAV simulation is the

interaction between hardware and software interaction. In a large-scale UAV simulation, a system

designer must consider at least the following items in Table 3.1 that comprise the hardware and

software mappings. The physical limitations of hardware ultimately pose the most overbearing

constraints on a real-system, and a simulation should account for these constraints. For example,

it would be unreasonable to simulate a production level micro-UAV that passively gathers infrared

data as the size of a bumblebee if the smallest infrared sensor currently produced is several orders

of magnitude larger than a bumblebee.

For reconnaissance UAV designs, persistent data management is a significant design factor

that influences both the physical characteristics of a UAV as well as security considerations. Data

that is passively collected and stored on a UAV can simplify security considerations because it

eliminates the need for a broadcast, which might be detectable by hostile forces. Persistent storage

if hefty enough, however, affects the physical characteristics of UAVs because the physical hull of

the UAV must house the storage mechanism, and the UAV must maintain particular flight and

maneuverability characteristics.
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3.2.2 Software Model of the AFIT Swarm Simulator. The existing AFITSS is the logical

fruition of Kadrovach’s swarm model with parallel extensions by Corner [16,39]. Kadrovach’s work

produced an implementation of an unscalable swarm model that uses a global data structure and

is designed for a serial processor. A benefit of this model is that it does accurately simulate the

flocking behavior of a swarm and can be used in applications that require analysis of sensor coverage

within the swarm. Disadvantages of the model include its unscalability because of the reliance on

global communication within the swarm and its unroutability (currently, the swarm wanders in a

pseudo-random fashion).

Corner’s work [16] was not able to produce any speedup using optimistic event processing

with the Breathing Time Warp algorithm, and further investigation on this topic is the focus of

part of the experimentation and analysis as described in Chapters 5 and 6. Recent work from Rome

Labs shows that custom hardware and modification to the SPEEDES libraries can further improve

performance for some applications [3].

A conceptual architecture of the existing simulator is presented in Figure 3.1. The exist-

ing simulation comes in two varieties: ‘DIScline’ and ‘pswarm’. The former is a Linux port of

Kadrovach’s Visual C++ implementation, while the latter is a parallelization of the Linux port by

Corner. The remainder of this section discusses the existing software architecture of the AFITSS.

3.2.3 SkyView. SkyView is a visualization tool originally developed by Ball Inc. The

Air Force Research Labs Virtual Combat Laboratory (AFRL/SNZW) has a licensed copy with

permissions to alter and maintain it for specific AF applications. SkyView can visualize any simu-

lation adhering to the IEEE DIS standard [38], and provides a bird’s eye view of the battle space.

Individual actors, including man-in-the-loop actors, can operate at their own individual terminals,

while commanders can view the entire battle space or specific portions thereof. Figure 3.2 shows a

screenshot from AFRL/SNZW’s Skyview. SkyView’s user interface includes a help menu, extensive

zooming options, fully spherical viewing of the battle space, and loads real Digital Terrain Elevation

40



Figure 3.1: The overlying conceptual architecture of the simulation showing which components
interface directly with other components.

Figure 3.2: A ‘kswarm’ of UAVs flying in Skyview.

Data (DTED) that can be configured. Visualization is of particular importance for swarm research

because it is saves much time and tedious analysis. Instead of analyzing sequences of matrices

and output files filled with numbers, a visualization system provides a manner of actually seeing

the results. Skyview, in particular, allows for viewing in near real-time, which is a critical aspect,

because future work will undoubtedly become more interactive. The ‘newlibdis’ communications

library interfaces to Skyview by means of a DIS daemon. Currently, SkyView is a one-way pipe

capable of accepting data but not passing any data back. Primitive data passing in the opposite

direction is necessary if real time user interaction is to be accomplished using SkyView.
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3.2.4 SPEEDES. SPEEDES (Synchronous Parallel Environment for Emulation and Dis-

crete Event Simulation) is a freely available open source research initiative that has been maintained

by the Metron High Performance Computing (HPC) group for over a decade2. It is a very flexi-

ble, robust, and well documented system intended specifically for modeling parallel discrete event

simulations. For these reasons, it was selected as the basic framework for Corner’s pswarm [16].

SPEEDES is written in C++ and is an Object Oriented (OO) library. This is very convenient and

appropriate for discrete event simulations because of the inherent OO nature of simulation itself. In

particular, this allows each particle of swarms to encapsulate its directional velocities and heading

angle, which eases software development. Message Passing Interface (MPI) support is not available

for SPEEDES and is not expected to become an initiative, because over the redundant overhead

that would be imposed when marshaling data to and from nodes. In fact, recent efforts at Rome

Labs have endeavored to remove much of the unnecessary communication in the TCP stack in lieu

of a more lightweight Myrinet implementation, improve algorithms in SPEEDES, and incorporate

specialized hardware [3]. Preliminary results show that optimizations to the SPEEDES library can

improve performance, but definitive results on the topic are still pending.

3.2.5 ACE Libraries. The ADAPTIVE Communication Environment (ACE) is a freely

available, open-source OO framework that implements many core patterns for concurrent com-

munication software3. ACE provides a rich set of reusable C++ wrapper facades and framework

components that perform common communication software tasks across a range of OS platforms.

The communication software tasks provided by ACE include event demultiplexing and event han-

dler dispatching, signal handling, service initialization, interprocess communication, shared memory

2The SPEEDES User’s Guide [44] provides a very comprehensive introduction to the framework and presents
the system in such a way as to ease the reader into the system in small increments. Complete source code for each
example in the manual is available at http://www.speedes.com. One need only have a GCC compiler to use the
code. Each example is designed to illustrate an important capability of the system. Theoretically, working through
the entire manual and having a comfortable background in the C++ programming language is all one should need
in order to effectively use and understand SPEEDES.

3This introductory paragraph taken from [56]
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management, message routing, dynamic (re)configuration of distributed services, concurrent exe-

cution and synchronization.

The ACE libraries provide the underlying communication infrastructure upon which the

‘newlibdis’ library is implemented. In many cases, DIS functions are nothing more than an adap-

tive wrapper around an ACE function. A general understanding of how the ACE libraries work

is important for understanding some of the underlying technical aspects of AFITSS, but directly

interfacing to ACE should continue to be channeled through the DIS interface wrappers.

3.2.6 ‘newlibdis’ DIS Library. The ‘newlibdis’ DIS library is a development of AFRL/SNZW,

built upon the ACE libraries, and provides a one-way communication pipe to Sky View. Essen-

tially, ‘newlibdis’ uses foundational C++ objects to construct Protocol Data Units (PDUs) that

relate information about the entity state of an object in the real world such as a UAV or radar site.

‘newlibdis’ uses extrapolation (dead reckoning) to tract the position and velocities of objects in

order to conserve network bandwidth. While some additional features such as multicast capability

and expanded PDU support need to be added to the library, ‘newlibdis’ serves the AFRL VCL as

a specific implementation of the DIS standard that allows multiple DIS applications to run on a

single machine.

3.2.7 Kadrovach’s kswarm. Kadrovach developed a system for modeling swarm based

communications [39]. A primary result of his Ph.D research was ‘kswarm’, an implementation of

a serial algorithm having O(n4) complexity that simulates a swarm of particles. His experiments

and work are very well documented in his dissertation and improving his work was very much

Corner’s primary effort and continues to be no small part of current AFIT research. A primary

issue pointed out by Corner [16] is the need for a global controller in ‘kswarm’ and that the serial

communications model is not entirely accurate.
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The serial communications model inaccuracies are illustrated via the given scenario: Given a

swarm of sensors S, suppose that si ∈ S is updated at t=1. Sensor sj makes a movement based on

si’s new position, Kadrovach’s algorithm maintains that sensors si and sj moved at exactly the same

time. Corner addressed this change, although it resulted in little difference for the flocking behavior

of the swarm, considerably smoother swarming behavior emerged [16]. ‘kswarm’ as produced by

Kadrovach is written in Visual C++, and so it has dependencies on the Microsoft Foundational

Class (MFC) libraries. Corner replaced these dependencies with their QT equivalents with the port

to Linux. Visualization of ‘kswarm’ scenarios is accomplished via watching ‘kswarm’ binary output

files as MatLab movies.

3.2.8 Corner’s ‘DIScline’ and ‘pswarm’. Before parallelizing ‘kswarm’, Corner accom-

plished a serial port to Linux, ‘DIScline’, and was able to visualize via SkyView through calls

to the ‘newlibdis’ API. A parallelization of the serial port resulted in ‘pswarm’. Parallel simula-

tion of ‘pswarm’ is accomplished with AFIT’s Beowulf cluster. Corner then parallelized the work

and dubbed the parallelized version ‘pswarm’. ‘pswarm’ is a straight forward parallelization of

Kadrovach’s algorithm in that it uses continues to use Kadrovach’s global data structure–a giant

bottleneck in terms of scalability. ‘pswarm’ uses SPEEDES for a scheduling mechanism, and with

minor exceptions, SPEEDES is the “ideal” software library for implementing a PDES. ‘pswarm’ im-

proves the ‘kswarm’ algorithm by lowering it’s algorithmic complexity to O(n3) through eliminating

an outer loop with the parallelization. Although ‘pswarm’ leaves much to be sought, it does pro-

vide proof-of-concept for a more high fidelity simulation and addresses many of the considerations

necessary for developing a more advanced parallel swarm simulation.

3.2.9 Running the AFIT Swarm Simulator and Hardware Configurations. Corner docu-

ments the extensive use of scripts in order to accomplish the many tasks involved with running a

parallel SPEEDES application using a Portable Batch Scheduling (PBS) system. As of his research,

the configuration of the nodes in the Beowulf cluster involved only 32-bit nodes, with the ability to
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use 1 or 2 processors per node (sharing memory) with either a fast ethernet or Myrinet backplane.

Nodes 1-32 in the aspen “workq” use the fast ethernet backplane, while nodes 33-48 in the aspen

“myriq” use the faster Myrinet backplane. Although the simulation could theoretically run in the

“polyq” having a fast ethernet backplane with very minor changes to the scripts, the “polyq” is

not meant for parallel processing per AFIT computing protocol.

Since Corner’s research some hardware changes have taken place. The most notable changes to

hardware that could potentially impact the parallel simulation include 1) there is only one processor

per node available on the aspen “workq” and 2) a new 64-bit cluster (tahoe) was installed.

Because the scripts were in an unmaintainable state, many of them were rewritten for read-

ability, understanding, and maintenance. Many other artifacts in their containing directory were

eliminated or categorized into subfolders for similar purposes. Of notable interest, the “start.sh”,

“doRuns.sh”, and “runMatrix.sh” scripts were rewritten. Because the newer scripts are built such

that they rely on environment variables instead of hardcoded paths, some elementary configuration

is necessary by setting a few paths in a users Bash profile. Scripts were rewritten with the ability to

operate on the 64-bit cluster as well, so variables need to point to different compilations depending

on which head node the user is logged into. The actual SPEEDES library compiled successfully

for 64-bit processors but complications with output from the “external module” prevented data

collection and analysis.

An additional burden to running the simulation involved passing a long string of arguments

to “start.sh” with each run of the simulation. In order to provide a more friendly interface, a simple

Python GUI frontend was built that facilitates the process and is show in Figure 3.3.

3.3 Shortcomings of the Existing Swarm Simulator as a SPEEDES Application

The primary issue with the current implementation of Kadrovach’s work as a SPEEDES

application as implemented by Corner is two-fold: 1) the algorithm’s use of a global data structure
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Figure 3.3: A simple GUI interface for running the AFIT Swarm Simulator. Previous usage was
tedious and involved passing all arguments to the application via the command line.

and 2) the enormous number of rollbacks involved in the Breathing Time Warp optimistic processing

algorithm. Although the algorithm’s running time is polynomial, Corner’s analysis of his own

implementation shows that it does not scale for swarm sizes larger than 100. Ideally, AFITSS

should be able to simulate many thousands of micro-UAVs. Corner’s research measured varying

configurations of UAVs in simulation for serial and parallel runs. Corner was surprised to discover

that the parallel implementation slowed to a crawl for an experiment involving only 500 UAVs with

10 processors using the SPEEDES library. Corner’s particular experiments eventually concluded

that “the working parallel swarm SPEEDES implementation was not efficient enough for running

larger UAV counts (> 100)” [16]. More in depth analysis of the simulation performance is presented.

The science fiction work Prey [19] provides an interesting and not entirely unbelievable sce-

nario involving very large swarm sizes. The primary factor driving the scalability and efficiency

issues with the current algorithm is the need for each member of the swarm to communicate with

n − 1 other members of the swarm at each time step. Therefore, adding an additional swarm

member introduces n− 1 additional communications for each original member of the swarm. HPC

hardware and implementation can only provide so much relief. In short, the current version of

‘kswarm’ and its underlying data structure simulates swarm behavior for small swarm sizes but

cannot simulate very large swarm sizes; ‘kswarm’ does not address the routing of swarms.
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For large scale simulation, future research efforts must produce a new and scalable communi-

cations algorithm. This algorithm should inherently integrate other considerations such as routing

as applicable. It is not reasonable to develop a swarm algorithm that does not have an routing

mechanism embedded and “attach” this capability to the algorithm after its inception. Rather,

the routing aspect of the algorithm should be part of the swarm algorithm model and abstractly

verified before the actual implementation begins for the simulation. To state it another way, the

routing algorithm inherently has a tight coupling to the internal behavior of the swarm. A swarm

that is capable of being routed from one coordinate to another must have an underlying model that

addresses at least these two central issues.

3.4 Conceptual Model for a Swarm of Particles

In order to model a swarm, each member can be viewed as a particle. The characteristics of a

single UAV are encapsulated as a tuple and then a swarm of k UAVS is simply a set of these tuples.

A sequence is necessary to model the swarm because each UAV must be uniquely identified.

The essential characteristics of a UAV include the relative X, Y, and Z coordinates, X, Y, and

Z velocities, a heading angle relative to an offset, and a max turn angle. In general, the offset angle

of the heading may be uniform for the entire swarm but is provided here for completeness. Other

important aspects of UAVs to consider include possibly heterogeneous fuel or energy capacities,

weights of the UAVS, and loading capacities.

u = {x, y, z, vx, vy, vz , θoffset, θheading, θmax−turn, Cfuel, Weight, Cloading}

If the UAVs are considered point masses, these parameters suffice, but if the UAVs are to be

modeled as realistically as possible, then it may be appropriate to also consider their potentially

heterogeneous wingspans, hull lengths, and girths. The parameters roll, pitch, and yaw may also

be considered at a much lower level design. Based upon a tuple designating a UAV, the swarm

then is simply a sequence of UAVs.
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S = uk = {~u1, ..., ~un}

3.5 Problem Constraints and Parameters

Essential problem parameters and constraints for routing a swarm of UAVs in a simulation

include, but are not limited to:

• A minimum or maximum number of UAVs in the swarm:
– |S| = n

• Starting and ending coordinates of the swarm, where a point is P = {x, y, z}:
– {pstart, pend}

• A boolean value indicating whether or not to self-destruct in the case of a fatal event:
– SD = {0, 1}

• The notion of a neighborhood and/or visibility within the swarm
– ∀u ∈ S∃{~u1, ..., ~un}

• A sequence of way points, sorted by priority:
– W = P k = {~p1, ..., ~pk}

• Time windows, TW , (hard or soft) associated with the way points and their penalties:
– ∀p ∈ W∃tmin, tmax, Cpenalty

• A sequence of sorted threats:
– T = {p, risk} ×k {p, risk}, where risk ∈ [0, 1] ∧ p ∈ P

• A maximum mission duration based upon fuel and velocity constraints. For this work, con-
sider Cfuel ∝ tmax:

– tmax

• A tolerance, Cε to determine the proximity with which the swarm must come within way
points:

– ∀p ∈ W, ∃r ∈ <

• The minimum precision with which to conduct calculations:
– 10−k

3.6 Adapting the VRP to Swarming Reconnaissance

Previous work by Kadrovach and Corner provides a proof-of-concept for a working parallel

swarm simulation and allows various metrics regarding parallel performance and swarm behavior

to be collected and analyzed. Existing work does not, however, provide a means of routing the

swarms from point to point–an essential characteristic for any type of mission planning system.

48



Fortunately, routing a swarm maps nicely to an instantiation of the hard problem VRPTW, and

much research on this hard problem is published and readily available4.

In a routing model, UAVs must travel through a theatre and deliver a particular amount of

reconnaissance payload to a set of targets. Each target may have particular time windows, and the

total ‘capacity’ of each UAV is proportional to its fuel supply5. Once an instantiation of VRPTW

with additional threat constraints is solved, the swarm is subdivided according to waypoint pri-

orities and their associated threat levels. The subswarms then route through each circuit of the

routing sequence as a single vehicle, respond to a changing threat environment in their circuit inde-

pendently, and behave otherwise independently of other subswarms. Low level behavior parameters

and swarming characteristics for each subswarm may be tuned and set appropriately. Subswarms

navigating areas of threat would be tuned to behave differently than subswarms navigating areas

of relatively low threat depending upon mission criteria.

A generic mathematical instantiation of the swarming reconnaissance problem may be for-

mulated as follows: There exists a set of waypoints W , each requiring a payload of reconnaissance

known a priori ck, such that ∀wi ∈ W∃cn, where n > 0. A homogeneous tuple of UAVs S = um ex-

ists and each u ∈ S has fixed fuel capacity such that ∀u ∈ SCfuel(u) = Cfuel(u). There also exists

a set of costs, Q 3 qij , incurred by traveling amongst any two way points wi and wj . A circuit G

obtained from W ×k W is defined as a sequence from W that starts and ends at pstart. The solution

to this instantiation of the VRP is the set of Z simple circuits given by Z 3 min
∑

g∈G

∑

q∈Q q

subject to the following constraints:

• No partial reconnaissance payloads are allowed.
– ∀wm∃ci 3 ci = creq

• All reconnaissance activity must be fulfilled.
– ∀li[∃qai, qib ∈ Z]

4Routing a swarm via a VRP solution presupposes the capability of a swarm to route from one coordinate to
another coordinate as one of its inherent characteristics, preferably in 3 dimensions. The process of routing the
swarm as referred to by a VRP solution is different from the swarm’s ability to ‘route’ or traverse an edge on a
graph.

5Assume travel distances between targets is negligible or account for the travel distances by subtracting an upper
threshold from the UAVs maximum fuel supply
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• The only intersection of the circuits in Z is pstart.
–

⋂

∀zi∈Z = pstart

• Each route must have length less than or equal to the maximum distance the swarm can
travel.

– ∀u ∈ S,
∑

qij ∈ Zu ≤ tmax

• Time windows must be met for all way points.
–

∑

tw∈TW ·δtw = 0, where δtw = 0 ⇔ ∀w ∈ W∃u ∈ S 3 At(u, p) ∧ t ≤ twmax(w) ∧ t ≥
twmin(w)

All constraints except for the final two are standard CVRP constraints. The time windows

constraint is the standard VRPTW addition to the CVRP, and the final constraint is necessary

for modeling a hostile environment. The time windows constraint increases the combinatorics of

the problem by orders of magnitude, and modeling threats in the environment only associates an

additive cost to waypoints. Incorporating threats into the routing evaluation function is handled

by associating a threat level with each waypoint instead of modeling the threats as waypoints

in and of themselves. This methodology adds a measure of robustness by reasoning about the

uncertainty associated with threats and keeps the routing algorithm simpler than it would be than

by attempting to route around threats.

A necessary step toward refining a routing model that represents threats is to define the

waypoint neighborhood threat level for any given waypoint k in terms of concentric equidistant rings

of varying proximity c to the waypoint k.

Definition 3.1. A waypoint k’s neighborhood threat level Ni,j(k) is proportional to the additive

cost of all threats contained in the circular distance surrounding k with radius i ≤ r ≤ j, where

∀i∀j(j − i) = c.

The threat level associated with any given waypoint k is a function of the proximity of all of

the threats in any given neighborhood of k with maximum j value jmax:

TLk = Σjmax−c
i=1 Ni,i+c(k)∆c (3.1)
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Figure 3.4: A routing scenario.

Figure 3.4 illustrates one such hypothetical routing scenario for this given model. The center

of the figure is a central depot location where all subswarms begin and end their routes. Red

triangles are threats, and numbered squares are waypoints. The cost of visiting a waypoint is

proportional to the distance to travel to the waypoint and the threat level associated with it. Each

waypoint’s threat level is a calculation that takes into consideration the proximity of surrounding

threats.

Modeling threats in this particular manner provides robustness for the model by not requiring

precise information about any given threat. Rather, the uncertainty for any given threat may be

represented in the neighborhood threat levels of the surrounding waypoints–resulting in a simpler

routing algorithm. This outcome is desirable since the VRP is already a hard combinatorial prob-

lem. An additional property of modeling threats by varying degrees of certainty and uncertainty is

that the routing algorithm is more resilient to changing threat levels than it would be by modeling

threats as separate entities and routing UAVs around them in a ‘cat-and-mouse’ type game.
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Given the aforementioned routing and swarm model, Algorithm 2 presents a high level con-

troller for a mission planning system.

3.7 Summary

High-level design for a UAV simulation involving mission routing is prerequisite to a lower level

modeling. The high level design presented in this chapter reviews a conceptual architecture of the

existing AFIT Swarm Simulator and addresses some of the issues with the current implementation

that must be overcome in order to produce a high fidelity Parallel Discrete Event Simulation

capable of routing very large swarms of UAVs. In particular, scalability, software component

architecture, and routing issues are addressed. This high-level design considers bottlenecks and

efficiency problems between components of the model and also address effectiveness in the sense of

the model being able to complete an assigned task as determined by a requirements specification.

Low level design investigates in detail the pertinent aspects of the high-level model in consid-

eration and addresses specific efficiency issues of selected components of the model. The low level

design for a specific approach to routing swarms of UAVs fills the bulk of the next chapter and is

a cornerstone to a realistic high fidelity PDES capable of supporting Air Force organizations such

as the Air Force Research Laboratories Electronic Warfare Sensors Directorate (AFRL/SNZW)

Virtual Combat Laboratory (VCL).
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Data : S, pstart, pend, tmax, T , W , TW , SD, Cε

Result : V isited Waypoints, Waypoint V isitation T imes,
Waypoint Epsilon V alues, SWARM@pend

Routing Sequence := Calculate Routing Sequence(W,T, TW );
Mission Duration := Calculate Duration(Routing Sequence);
Max Duration := Calculate Max Duration(S);
if Mission Duration ≤ Max Duration then

‘Error: Mission Duration exceeds fuel constraints’;

end

SubSwarms := Subdivide Swarm(Routing Sequence,T, |W |);
/*In Parallel*/

for ∀s ∈ Subswarms do

Waypoint Sequence := Calculate Waypoint Sequence(Routing Sequence);
V isited Waypoints := ∅;
Waypoint V isitation T imes := ∅;
Waypoint Epsilon V alues := ∅;
t = 0;
while t < Max Duration

2
do

for ∀u ∈ s do

Calculate Update(u);

end

for ∀u ∈ s do

Update(u);

end

Next Waypoint := Head(Waypoint Sequence);
Waypoint Epsilon := Dist to Waypoint(Center Of Mass(s), Next Waypoint);
if Waypoint Epsilon < Cε then

Waypoint V isitation T imes := Waypoint V isitation T imes
S

t;
V isited Waypoints := V isited Waypoints

S

Next Waypoint);
Waypoint Epsilon V alues := Waypoint Epsilon V alues

S

Waypoint Epsilon;
Waypoint Sequence := Waypoint Sequence− Next Waypoint;

end

Calculate Threat Update;
if Threat Update then

Routing Sequence := Calculate Routing Sequence(Waypoint Sequence,T, TW );
Waypoint Sequence := Calculate Waypoint Sequence(Routing Sequence);

end

if Is Fatal Event ∧ SelfDestruct then

Destroy Swarm;

end

t = t + ∆t

end

while Waypoint Epsilon > Cε do

Calculate Threat Update;
Routing Sequence := Go Home(pend, T );
Waypoint Epsilon := Dist to Waypoint(Center Of Mass(s), pend);
for ∀u ∈ s do

Calculate Update(u);

end

for ∀u ∈ SWARM do

Update(u);

end

if Is Fatal Event ∧ SelfDestruct then

Destroy Swarm;

end

end

end

Land Swarm;

Algorithm 2: Pseudo-code for high level swarm control.
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IV. Low Level Design for UAV Routing

Nothing in life is to be feared.
It is only to be understood.

Marie Curie

The previous chapter provided background on a specific implementation of a swarm model and a

parallelization of this model. It also introduced a high level model for routing swarms of UAVs. This

chapter extends that base with a detailed discussion of a particular routing algorithm implemented

using a Genetic Algorithm (GA). Exploration and exploitation characteristics of a particular GA

implementation are presented as a mathematical model, and particular techniques for embedding

problem constraints are investigated. The next chapter presents experiments for measuring effi-

ciency of this algorithm using well-known benchmark problems, an in depth landscape analysis for

the problem domain, and parallel simulation analysis.

4.1 Decoding Path Based Representation Solutions

A naive method for representing VRP solutions is with path-based representation (PBR).

In PBR, henceforth referred to as PBR-1, a solution to the VRP is simply a single sequence of

locations. In such a sequence, routes are obtained by walking the sequence from start to finish in

order to group consecutive locations into groups. When adding the next consecutive location would

exceed the total capacity of a vehicle, the current route terminates and a new route begins. This

particular decoding procedure takes Θ(n) time for n locations. Figure 1(a) illustrates PBR-1.

A variant of this particular PBR method, designated as PBR-2, shown in Figure 1(b), involves

a final attempt to more tightly pack the current solution. Instead of immediately terminating the

current route and starting a new one, any possible location that could be added to the current

solution from the remaining locations is added. This particular procedure in its worst case could

potentially take O(n2) time. This worst case would involve each vehicle only being capable of

serving a single location, and consequently, all possible attempts at adding an additional location
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(a) PBR-1 (b) PBR-2

Figure 4.1: The decoding of a solution encoded with PBR. Assume that even numbered locations
have a demand of one unit, odd numbered locations have a demand of two units, and vehicles have
a capacity of ten units.

are in vain. In any real world problem, the worse case is not expected; if the worse case were to

occur, an optimal solution would be trivial: to use a single vehicle for each delivery location. Still,

a worst case time complexity calculation gives an upper bound on the decoding time. The time

complexity for this worst case is trivial to prove with mathematical induction.

The best case for PBR-2 is given when the sequence of locations optimally packs the vehicles.

In this case, the decoding sequence takes only O(n) time.

4.1.1 Crossover and Mutation Operators. Any crossover or mutation operators compatible

with the TSP are compatible with PBR for the VRP, since any feasible PBR solution can be

interpreted to represent a Hamiltonian circuit for the problem. The most common PBR crossovers

are partially mapped (PMX), order (OX), and cycle (CX) crossovers [45]. While an exposition of

these operators is not pertinent to discussion, a brief summary of their behavior is in order.

The PMX operator is well-known and selects subtours of equal length from two parent solu-

tions, exchanges them, and attempts to preserve as many of the remaining locations as possible.

Locations where ‘conflicts’ would occur are repaired by a set of mappings given by the subtour

exchanges. This operator exploits the similarities in the value and ordering between two solu-
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tions [32]. A one parent “remove-and-replace operator, however produced better results on an

ordinal representation for a specific 100 city TSP problem [26].

The OX operator attempts to exploit the notion that the relative order of the cities in a

solution are important [23]. For example, various permutations of locations may be identical

solutions if the two are in fact the same Hamiltonian cycles. No known competitive results for the

TSP were found in the literature for this operator.

The CX operator emphasizes the preservation of the absolute position of elements from the

parent solutions [49]. The operator ensures that each element’s location in the offspring solution

comes from one of the parent solutions. Often this means that an initial selection of one gene from

one parent is all that is needed in order to generate the rest of the entire solution. Which gene is

selected is paramount to this operator’s success.

Any operator that preserves a mapping to a Hamiltonian circuit is a candidate mutation

operator. Common mutations may include swaps, displacements, and inversions [45].

4.2 Genetic Vehicle Representation

GVR [43, 51, 62, 63] provides the base for an effective routing algorithm. The forte of GVR

is its data representation; its novel aspects include its crossover and mutator operators. A deeper

analysis of these operators than Tavares presents is paramount to developing metrics for measuring

GVR’s efficiency and understanding its balance between exploration and exploitation.

GVR differs from PBR in that it can explicitly provide the number of routes and locations

in them for a given solution without significant decoding. For any given solution, there exist a

set of routes where each route is a sequence of locations. In previous work by Tavares, each route

may or may not meet feasibility criteria. If a route fails to meet feasibility criteria, it is implicitly

repaired. That is, the solution is repaired on a meta-level and evaluated, but the actual building

blocks of the solution remain unaltered. A Lamarckian model would explicitly repair the solution,
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evaluate it, and then replace the infeasible solution with the repaired solution in the population.

Given these characteristics, the best case time complexity to decode a solution is Θ(n) for the case

in which solutions are explicitly repaired and exactly n locations are visited with each decoding.

The worst case in which no repairs take place and a mechanism such as PBR-2 is used to decode

the solution is O(n2).

4.2.1 Crossover. The crossover operator is conceptually simple. Two individuals, C1 and

C2 are chosen for selection. A subroute, r from individual C1 is inserted into a copy of individual

C2 in such a way that the distance between the insertion location and the first location in r1 is

minimized. Mathematically this sentence is formulated as follows: ∃k∀ldist(k, r1) < dist(l, r1)∧k 6=

r1 ∧ k, r1 ∈ L. In general, guaranteeing a solution to the given sentence requires Θ(n) time for n

locations in a solution since all possible solutions must be examined. For a given subroute r and

donor S of size n, there exist n possible crossovers.

Clever techniques such as table lookups or hashes may decrease this time to a constant, but

even then, it may still take O(n) time to traverse the routes and insert r. Depending upon the

particular implementation, an additional preprocessing time of O(n) may be necessary in order

to remove the duplicate locations from the surrogate such that once r is inserted, the solution

is again feasible. Figure 4.2 illustrates the GVR crossover. The final step illustrating the repair

operation occurs with some probability 1 ≤ p ≤ 0. Note that the crossover operator can never

create additional routes, because there always exists a location in an existing route that has a

minimal distance to r1. The crossover operator, however, can eliminate an existing route. This

happens only when the subroute r already exists in the donor as its own route.

4.2.2 Swap Mutation. In swap mutation, two locations l1 and l2 in solution S are chosen

at random and swapped with one another. These two locations may or may not exist in the same

route, and there exists the possibility that both random locations may be the same (in which case
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Figure 4.2: The crossover in GVR. A surrogate accepts an insertion of genetic material from a
donor and a repair operator removes the original duplicate locations in the surrogate. The final
step illustrating the repair operation occurs with some probability.

no change occurs as the result of the mutation). Thus, for a solution containing n locations, there

are n possible swap mutations that may take place.

Notable properties of the swap mutator are that the number of locations in the affected routes

does not change: ∀Rpre−swap∀Rpost−swap ∈ S|Rpre−swap| = |Rpost−swap|. The length of the routes

and total demand for the route, however, almost certainly changes. Additionally, swapping may

result in a feasibility violation by causing a route to exceed the maximum capacity of a vehicle.

The potential disruption for the swap mutator is comparatively low because at most two locations

are affected. Consequently, even if frequent swaps occur in a model with low repair probability, the

overall characteristics of the solution remain relatively similar for the general case.

4.2.3 Inversion Mutation. For inversion mutation, a subroute from a solution r ⊆ S is

chosen and inverted. For a solution containing n locations, there are Σn
i=1

(

n
i

)

possible inversions

including the trivial ones of which a subroute of size 1 is inverted and no actual mutation occurs.

Notable properties of the inversion mutator are that the number of locations and total de-

mand of the affected route does not change, ∀Rpre−inv∀Rpost−inv ∈ S|Rpre−inv| = |Rpost−inv | ∧

demand(Rpre−inv) = demand(Rpost−inv), and thus, feasibility criteria is not affected as a result of

the mutation. The only change that may occur is the total distance of the route. Inversion mu-

tation, however, can be very disruptive, especially in models with very low repair probability, and

is not usually employed as a GA operator. The reason for this disruption is because the inversion
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(a) Swap (b) Inversion

(c) Displacement (d) Insertion

Figure 4.3: GVR mutation operators

mutator can change a subroute of a solution in which the subroute is actually all of or parts of two

separate routes.

4.2.4 Displacement Mutation. The displacement mutator selects a subroute from a solu-

tion r ⊆ S and relocates it to another place which may or may not be in the same route. In fact,

it is identical to the crossover operator except that it randomly inserts the subroute r instead of

inserting it in such a way that the total distance after the operation is minimized. This random

insertion point may result in the creation of a new route with some probability; Tavares uses the

probability 1
2V

, where V is the number of vehicles in the current solution. Thus, the higher the

number of routes in a solution, the lower the probability that an additional route is inserted.

Like the crossover operator, for a solution containing n locations, there exist Σn+1
i=1 i total

possible displacement mutations including the trivial cases in which no change occurs. For a given

subroute r of cardinality k, there exist (n + 2) − k possible displacements in the solution. The

possible disruption associated with this mutator is expected to be relatively high since possibly

long subroutes may be displaced.
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4.2.5 Insertion Mutation. Insertion mutation is a special case of displacement mutation in

which the subroute size of displacement is of size one. Thus, for a solution containing n locations,

there are (n + 2) − 1 = (n + 1) possible insertion mutations including the trivial case in which

no change occurs. Potential disruption from insertion mutation is expected to be very low since

at most one route and one location is affected. This holds true even in models with low repair

probability in which very long infeasible routes may exist in a solution.

4.3 Embedding Specific Constraints into a UAV Routing Mission

4.3.1 Embedding Constraints in the Problem Statement. Specific constraints to a UAV

routing mission are part of the specific problem domain and should be incorporated into the problem

statement. Consider the following minimal constraints for a UAV swarming reconnaissance mission:

• The sum of the reconnaissance for a route may not exceed a subswarm’s capacity

• Time window constraints may not be violated for any way point in any swarm’s route

• Threats known a priori must be evaluated and incorporated into a routing algorithm’s ob-

jective function at a global level.

• Threats appearing dynamically while subswarms are en route shall be handled at the sub-

swarm level.

Meeting the constraint that the sum of the reconnaissance for a route may not exceed a

subswarm’s capacity is typical of any VRP. In traditional delivery truck based approaches, this

constraint required that the sum of the demands for each location in a route be less than the

capacity of a delivery truck. With respect to UAVs, however, this constraint implies that the

maximum time the subswarm can stay aloft must be greater than the required time to survey

all of the waypoints in the route assigned to the subswarm. The time to survey is the sum of

the reconnaissance times for each way point in addition to the traveling time in between each of
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the waypoints. This time to travel between each of the waypoints may or may not be negligible,

depending on the specific context of the routing mission.

Meeting the time windows constraint for each way point in each route is a standard constraint

of any VRP subject to the time windows constraint. Various techniques have addressed this con-

straint, but given a GA as the routing algorithm, two basic approaches are possible: to explicitly

embed the time window information into the genotype or to use an auxiliary data structure to

process this information. The standard fitness criteria for problems of VRPTW in the Solomon

Test Set is the shortest duration of time required to complete all deliveries; the basic difference

between the VRPTW fitness criteria and the CVRP fitness criteria is that the VRPTW fitness

criteria must account for delays and delivery durations at each delivery location. There exist two

ways in which the time window constraint may be violated: early arrival at a delivery location, or

late arrival at a delivery location or the depot.

The best published results in EC literature use GVR [64]. Tavares handles the early arrival

violation by simply having the vehicle wait until the earliest possible delivery time. The late arrival

violation is handled by adding a new vehicle (and resultantly a new route) to the itinerary such

that a new vehicle meets the delivery time window for the location that would otherwise have been

in violation.

The threat constraints are fairly simple to incorporate into the standard VRP if a threat is

viewed as an additive cost to the objective function for a way point. Chapter III discusses specific

approaches that may be used for incorporating threats into a VRP with minimal impact on the

algorithm’s complexity. Handling changes in the threat environment at the subswarm level is simply

a matter of rerouting the swarm amongst the remaining way points each time a significant change

occurs.

4.3.2 Guaranteeing Feasibility with the Evolutionary Routing Algorithm. There exist three

mainstream approaches for handling feasibility criteria with a GA. One approach is to generate an
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initial population of feasible individuals, and design operators that guarantee feasibility after their

operation. The overwhelming disadvantage for this approach is that it is not always a straight-

forward process and can be difficult or impossible to implement efficiently for the crossover operator,

especially with integer-represented solutions like in the TSP or VRP. Given this difficulty, repair

and penalty functions become the notable alternative.

4.3.2.1 Repair Functions. A repair operator transforms an infeasible solution into

a feasible one. This approach has the advantage over the previous possibility in that the crossover

operator can be more simply and efficiently implemented. As a result, more creativity and thought

can be placed on its design, and it can be more easily maintained or updated. A decision that

must be made when designing a repair operator, however, is whether to repair explicitly as in

a Lamarckian model, or implicitly as in a Baldwinian model. Still, there exists an uncountably

infinite number of shades of grey in between, because a repair may occur with some probability

1 ≤ p ≤ 0. Determining feasibility of a solution and repairing by segmentation can be accomplished

with a simultaneous pass through a solution, and is of order O(n).

4.3.2.2 Penalty Functions. A final possibility is not to pose any explicit feasibility

constraints on a solution; rather, use a penalty function that guides the search toward feasible

solutions by rating infeasible solutions with lower fitness values1. A penalty function should produce

solutions to the problem that are feasible, and has the potential benefit over the repair function

in that it does not explicitly manipulate the building blocks to guide the search. Still, effective

penalty functions are usually not trivial to derive and often require problem specific information.

Two common types of penalty functions include [6]

• Static Penalty Functions
• Dynamic Penalty Functions

1A broader categorization of penalty functions is to divide them into interior and exterior categories. Exterior
penalty functions, however, are the topic of this discussion. Exterior penalty functions penalize infeasible solutions
in an attempt to guide the search to the feasible solution space, while interior penalty functions penalize feasible
solutions in efforts of finding a ‘tight’ solution–one that exists on the edge between feasibility and infeasibility [6]
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Static penalty functions apply a constant penalty to solutions that violate feasibility in any

way. One formulation of a static penalty function is given by Equation 4.1 [6].

fp(x) = f(x) + Σm
i=1Ciδi

{

δi = 1 if constraint i is violated
δi = 0 otherwise

(4.1)

A disadvantage of this approach, however, is that it assumes that the penalty is a function

of the number of constraints violated, which may not be the case. For example, some optimization

problem have few constraints that are difficult to satisfy. Additionally, suitable coefficients must

be specified for this approach to be effective depending upon the relative severity of the constraints

to one another. An additional concept to investigate when using a static penalty function like

Equation 4.1 is whether or not penalizing for constraint violations can actually guide the search

toward feasible areas.

Another approach that is generally superior to Equation 4.1 is one that penalizes according

to the distance to feasibility or ‘cost-to-completion’ [31,54]. Equation 4.2 illustrates such a penalty

function [6].

fp(x) = f(x) + Σm
i=1Cid

κ
i

{

di = δigi(x) for i = 1, ..., q

di = |hi(x)| for i = q + 1, ..., m
(4.2)

In Equation 4.2, κ is a user-defined exponent, and di is the distance metric of constraint

i applied to solution x. Constraints 1...q are inequality constraints and will be activated when

the constraint is violated. Constraints (q + 1)...m are equality constraints that will activate the

penalty if there is any distance between the solution and constraint values [6]. Thus, the inequality

constraints guide the search toward the feasible solutions, and the equality constraints guide the

search toward local or global optima. Although existing literature for static penalty functions is

quite mature, defining parameters for penalty functions remains far from trivial and very much

problem dependent. Additionally, the notion of ‘distance’ between feasible and infeasible solutions

is not exactly straight-forward for hard optimization problems.
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Adaptive penalty functions can be viewed as a particular implementation of Equation 4.2.

Adaptive penalty functions increase penalty values in monotonically nondecreasing manner pro-

portional to the search time, which may be the number of generations. Equation 4.3 illustrates

an implementation of Equation 4.2, where si(t) is the monotonically nondecreasing function that

satisfies the definition of an adaptive penalty function as presented. An explicit example of si(t)

might be an expression such as si(t) = Cit or some variation thereof.

fp(x, t) = f(x) + Σm
i=1si(t)d

κ
i (4.3)

4.4 Summary

This chapter provided a mathematical model for a low level UAV routing algorithm using a

Genetic Algorithm (GA) and the associated time complexities for its operators. The GA-driven

routing algorithm may employ either a penalty or repair function to guide the search from infeasible

to feasible search areas and can use a variety of mutators to explore the space. The GA’s data

representation allows for its crossover operator to better preserve good building blocks during the

search than Path Based Representation approaches because it explicitly encodes each route separate

from the others. The next chapter presents experiments for measuring efficiency and effectiveness

metrics using this GA-driven routing algorithm.
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V. Experimental Swarm VRP Design

“In whatever position you find yourself
determine first your objective.”

– Marechal Ferdinand Foch

The routing algorithm for a swarm simulation must be both efficient and effective. A typical

method to measure effectiveness is running the algorithm on well-known benchmark problems and

comparing the algorithm’s results with the best published for the problems. Efficiency is often mea-

sured by the total search time, or time per iteration for an iterative algorithm. The most common

benchmark problems for the VRP are approximately twenty years old and have been approached

by nearly any algorithmic technique imaginable. For most of the benchmark problems, there are

known optimal solutions and established efficiency metrics. This chapter outlines experiments for

measuring the efficiency and effectiveness of a UAV Swarm routing algorithm. A swarm routing

algorithm is the cornerstone of any mission planning system.

5.1 Experiments in Measuring GVR’s Effectivness

This class of experiments is designed to provide insight into the effectiveness of GVR. These

experiments collectively form a suite and the outcome of each experiment successively determines

a point of interest for additional experiments. This is to say that preliminary experiments are

somewhat broadly focused, and each successive experiment gains slightly more focus based on

previous results from experiments in the suite.

5.2 Experiments in Routing

Experiments in this suite are designed to provide insight into GVR’s efficiency and effective-

ness. These experiments collectively form a suite and the outcome of each experiment successively

determines a point of interest for the following experiment. This is to say that preliminary ex-

periments are somewhat broadly designed, and each successive experiment becomes more narrowly
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focused based on previous results. For implementation, the GA is designed with GAlib [71] and

run on an AMD Opteron Processor running at 2.2GHz and 4GB of memory. A beowulf cluster is

used to facilitate and speed up the data collection process. Enough runs and data are collected to

either qualitatively or statistically fulfill each experiment’s objective.

Experiment 1.

Objective 5.1. To qualitatively determine the extent that a static penalty function can guide the

search process and lead to effective solutions using GVR.

The objective function is crucial to successful search with a GA. An important design decision

impacting a GA’s effectiveness is how it handles infeasible solutions generated from the recombi-

nation operators. GVR very often generates infeasible solutions from the crossover operator; the

infeasible solutions could be either repaired or penalized in order to guide the search. Previous

approaches for GVR used repair functions for guiding the search [51, 62–64].The intention of this

experiment is to determine to what extent a static penalty function can guide the search process.

Feasible CVRP solutions pose two basic constraints: 1) No vehicle capacities can be exceeded, and

2) At least the minimum number of routes possible must appear in a solution.

The problem definition provides vehicle capacities, and a lower limit on the number of possible

routes is given by dividing the total demand of all delivery locations by the vehicle capacity. Equa-

tion 5.1 penalizes both criteria; for the former condition, it penalizes using a ‘cost-to-completion’

metric, which is shown to be more effective than penalizing based only on the number of violated

constraints [6].

fp = ΣR
i=1fcap · fveh

(

fcap = Pcliδc

fveh = Pvδv

{δc, δv = 0} if i satisfied. {δc, δv = 1} otherwise

(5.1)
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This experiment runs all possible ratios of penalties, pcap and pveh ∈ {0, 1, 2, 4, 8,

16, 32, 64, 128, 256} on benchmark problem A-n32-k5 [8]. This problem, as previously mentioned, is

of relatively low combinatorics and is optimally solved in well under 10,000 generations by previous

GVR research using a repair-based approach [62, 63].

Experiment 2.

Objective 5.2. To measure the effectiveness of the repair operator in guiding the search process.

The GA is run on a diverse test suite of common CVRP benchmarks using a repair operator

that segments infeasible solutions at the point of violation in the route. 1 The benchmark prob-

lems include A-n32-k5, A-n54-k7, A-n69-k9, B-n63-k10, E-n76-k8, and M-n200-k17. Results are

compared to the best published in the literature and to results from other algorithmic techniques.

For all problems except A-n32-k5 and M-n200-k17, population sizes of 200 with 50,000 gen-

erations of evolution are tested. For problem A-n32-k5 only 10,000 generations are tested, because

this is an ‘easy’ benchmark problem and most published results use this metric. For problem M-

n200-k17, a population of size 400 and 100,000 generations are used because the combinatorics of

the problem are much larger than the other benchmarks under test. Furthermore, a matrix of runs

is conducted for all possible combinations of prepair ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and for all possi-

ble mutation combinations from pmutation ∈ {0.05, 0.10, 0.15, 0.20} except for two cases. Because

problem M-n200-k17 is very large and takes a long time period to execute, the mutation combina-

tions are reduced to pmutation ∈ {0.10, 0.15, 0.20}. For this experiment, tournament selection with

tournament size q = 5 and crossover pcross = 0.75 is used. The tournament size is designed to

apply very little selection pressure during the search, while the crossover rate is intended to exploit

the effects of recombination. Given various solutions to these benchmark problems, visualization

is accomplished via graphing the maximum, average, and minimum fitness values over time.

1Experiment 4 compares this operator to one that attempts to pack routes as tightly as possible by fitting any
possible locations into the remaining space.
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Experiment 3.

Objective 5.3. To determine how dependent effective problem solutions depend on tuning mutation

parameters.

Effective mutators are crucial to gaining insight into a GA’s ability to explore. Given the

best results from problem M-n200-k17 in Experiment 2, four matrices of runs with fixed crossover

rate and variable mutation rates are constructed. Graphical display of the data is accomplished by

holding two of the mutators at constant values while varying the others over a fixed range for 0.02

increments. This grid size should be fine grained enough to collect data indicative of the landscape.

The combinations of rates being varied include: displacement and insertion, swap and inversion,

inversion and displacement, and swap and displacement.

Experiment 4.

Objective 5.4. To determine if there exists a statistical significance between two different repair

operators; one operator segments routes at the point of capacity violation, while the other packs the

existing route as tightly as possible.

Given the best results from problem M-n200-k17 in Experiment 2, this experiment determines

whether there is a significant difference in solution quality for two different repair operators. One

operator repairs by packing the infeasible routes encountered during objective function evaluation

as tightly as possible. Another repair operator, the one used in Experiment 2 simply segments

infeasible solutions at the point of the violation and creates another route with the infeasible

portion. For each of the two operators, a series of 11 runs with different random number seeds is

conducted.

Experiment 5.

Objective 5.5. To determine how dependent the search process is on tournament size and if

population reinitialization after a time of stagnation can improve search results.
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Selection pressure is proportional to the ratio of the tournament size q to the population

size. Given graphical displays of maximum, mean, and minimum fitness values over time from

Experiment 2, this experiment determines if doubling q and reinitializing the population each

time the minimum fitness value in the population does not decrease by more than ε = 10 units

can improve solution quality. This approach is tried on the best and worst solutions for problem

M-n200-k17 from Experiment 2.

Experiment 6.

Objective 5.6. To determine if high quality solutions generated from the GA can be further im-

proved by a lambda exchange local search algorithm [65] as a post-processor.

Given a high quality solution produced with the Genetic Algorithm, this experiment deter-

mines if the results can be further improved by means of a fast local search that systematically

displaces all combinations of up to two locations. Results from this experiment provide additional

insight into the proximity of ‘good’ solutions to either local or global minima.

5.3 Experiments in Simulation

Experiments 7-10 compute and analyze the performance of a parallel swarm simulation em-

ploying Kadrovach’s swarm model [39], that is parallelized by Corner [16]. The primary objective

of these experiments is to measure and improve the parallel simulation’s performance.

Experiment 7.

Objective 5.7. To measure runtimes and calculate speedup and efficiency metrics for small swarms,

|SWARM | ∈ 32, 64, 128, 256, 512, on varying numbers of processors, P ∈ 1, 2, 4, 8, 16, 32 using op-

timistic event processing.

The underlying motive for this experiment is to be able to reproduce data from Corner’s

research [16] validating the lack of speedup for even small swarm sizes on various CPU configura-
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tions. The results of this experiment allow additional experiments in the suite to occur that make

comparisons between optimistic and conservative time management algorithms.

Given the standard parallel computing metrics for small swarm sizes, some insight is gained as

to how larger swarms may perform in parallel simulation under the same optimistic time manage-

ment algorithm. Corner’s previous parallel swarm research showed no speedup for any configuration

with any swarm size using the SPEEDES libraries; reproducing these results is the first step toward

future AFIT parallel swarm research.

Experiment 8.

Objective 5.8. To compare runtimes between conservative and optimistic techniques using the

SPEEDES libraries for various swarm sizes, |SWARM | ∈ 20, 40, 60, ..., 160, 180, 200, on a single

processor.

Previous research by Corner [16] implicity hypothesized that the Breathing Time Warp Algo-

rithm results in a more efficient simulation2, but his research results did not confirm this hypothesis.

In fact, his experimental results showed that for small simulations involving only 500 UAVs and 12

simulation time slices, there were more than 1.6 million rollbacks and the ratio of simulation time

units to wall clock time varied between ratios of 1:1000 and 1:2000.

This experiment is designed to verify that there are no significant efficiency differences between

conservative and optimistic techniques for runs on a single processor. Theoretically, there are not

expected to be any significant differences because no rollbacks should occur for the optimistic

technique on a single processor, thereby having it behave the same as a conservative one. If there

exist any significant overheads of using an optimistic algorithm in a simulation using SPEEDES,

results from this experiment should indicate that overhead.

2In theory, optimistic techniques often do provide superior results to conservative ones, and the SPEEDES User’s
Guide makes a good case for using the Breathing Time Warp Algorithm.
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Experiment 9.

Objective 5.9. To compare runtimes for conservative processing techniques using varying looka-

head window values W ∈ 0, 3, 4, 5, 6, 7 with the SPEEDES libraries for various swarm sizes, |SWARM | ∈

50, 55, 60, ..., 95, 100, on 5 processors.

This experiment follows the same procesure as Experiment 8, except that the runs are accom-

plished on multiple processors and for various lookahead windows. Results from this experiment

should provide insight into the sensitivity of the lookahead value, and the gain realized by using a

lookahead window as opposed to not using one.

Experiment 10.

Objective 5.10. To compare the difference in conservative and optimistic time management

schemes for a parallel UAV swarming application using variable CPUs and swarm sizes.

This experiment calculates the standard speedup and efficiency metrics for a conservative time

management event processing scheme with the SPEEDES libraries and compares them with results

from the optimistic event processing results from Experiment 7.

Given a particular lookahead window, the standard parallel performance metrics are calcu-

lated and compared to results from optimistic event processing using the SPEEDES Breathing

Time Warp algorithm. Recommendations are made about future direction in future parallel swarm

simulation based on the relative differences in results from the two techniques.

5.3.1 Summary of Experimentation. Experiments in this research endeavor primarily

involve two endeavors: 1) providing an efficient and effective routing algorithm that can be synthe-

sized into existing AFIT UAV research, and 2) improving parallel performance for the AFIT UAV

swarm simulation. A high level discussion reviewing experimental results from this entire suite

is crucial to synthesizing the results into a single unified message relevant to the overall research

objectives as discussed in Chapter 1 and to AFIT swarm research.
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5.4 Facilitating Experimentation with Software Tools

5.4.1 GAlib. Implementing experiments can be quite cumbersome without adequate

software tools. Often times, existing software applications are modified or tailored for a new

purpose, suites are developed from scratch, or ad-hoc components are melded together in a fragile

manner. None of these scenarios is ideal. A much more desirable alternative is to use a well-

tested and well-documented library of components for implementation. The use of such an existing

library reduces development time, provides maximum flexibility for change and alterations, and

allows developers to focus on the core of the experiment instead of the implementation details.

GAlib provides this opportunity.

GAlib is a C++ library of Genetic Algorithm components written by Matthew Wall from

the Massachusetts Institute of Technology. The software is free open source software, but subject

to some distribution and not-for-profit constraints [71]. The suite is a well-tested and widely used

library that provides the basic framework for developing an executing a GA. Basic features of the

library include predefined chromosome representations, selection mechanisms, crossover operators,

mutators, automated statistics collection, and support for Parallel Virtual Machine (PVM).

In addition to its built in features, GAlib is very customizable. Individual components can

be modified, new chromosome representations can be defined, and completely tailored GAs can be

produced in far less time than developing from scratch. To develop and execute a GA for these

experiments, the following steps are necessary:

• Download and compile the software

• Define a new chromosome representation for GVR

• Define recombination, population initialization, and utility operators for GVR

• Tailor any existing components such as selection mechanisms, etc.

• Develop any auxiliary components such as benchmark file readers, etc.
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Defining the custom chromosome representation is by far the most time consuming step.

Given successful completion of the previous steps, built-in GAlib components provide a rich set of

options for experimentation such as:

• The type of GA: Simple GA, Steady State GA, Island Model GA, etc.

• The type of selection operator: Tournament, Proportional, Random, etc.

• The collection of statistics and diversity data

• Convergence criteria

For a complete list of GAlib’s features see the User’s Guide [71]. Auxiliary code, compilation

notes, and a build script is given in Appendix I

5.5 Summary

This chapter presented experiments designed to measure efficiency and effectiveness of a

specific routing algorithm implementation that employs a Genetic Algorithm. Experiments are

tailored to reveal characteristics of the search that apply specifically to an “on demand” mission

planning system that expects high-quality results as quickly as possible and for which the amount

of time to search the space is variable. The next chapter presents the results of this experimentation

suite and analysis.
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VI. Experimental Results and Analysis of Swarm VRP

In questions of science the authority of a thousand is
not worth the humble reasoning of a single individual.

–Galileo

Experimentation without analysis is a futile activity. Demonstrating the existence or lack

of effectiveness and efficiency for an algorithm requires transforming the experimental data into

meaningful information and performing qualitative analysis.

6.1 Approximation of VRP and GVR Combinatorics

In order to appreciate the importance of effective search, a brief discussion and analysis of

VRP combinatorics is presented.

6.1.1 Mathematical Approximation. Although knowing that the VRP is at least as hard

as the TSP does provide some insight, it is useful to annotate a more precise mathematical analysis

of the problem’s combinatorics and how the algorithm maps data structures to individual solutions

in the overall solution space.

Illustrating that the VRP is at least as hard as the TSP is trivial. Consider the case where

there exists only 1 vehicle to service |L| delivery locations; the optimal solution is one of |L|! possible

Hamiltonian circuits.

One possible approach to illustrate the mapping of VRP solutions to the solution space GVR

represents is to consider all possible partitionings for all of the possible Hamiltonian circuits given

the |L| delivery locations. For any given Hamiltonian circuit of |L| locations there are exactly
(|L|
|L|

)

ways to leave the circuit as is,
( |L|
|L|−1

)

possible ways to segment the circuit into two partitions,

( |L|
|L|−2

)

ways for three partitions, and so forth. Equation 6.1 gives the general case for determining

all possible partitionings of |L|
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P = Σ
|L|
i=1

(

|L|

i

)

= 2|L| − 1 (6.1)

Given that proving an optimal solution for the VRP requires consideration of all possible

partitions for all possible permutations of |L|, the VRP is harder than TSP by at least a factor of

2n−1, given by Equation 6.1. Conceptually, for every one of the |L|! possible Hamiltonian circuits,

P possible partitionings must be considered; to phrase it differently, all possible subsets of |L| must

be considered. The GVR solution space is capable of representing duplicate solutions to include

the solutions that differ only because the routes are ordered differently. Certainly not all subsets

of the power set of solutions is in the feasible solution space for the VRP, but they still represent

the entirety of the problem’s combinatorics and comprise the space GVR can represent.

6.1.2 The Importance of Effective Search. To gain perspective on the combinatorics,

consider a pedagogical example with a TSP having |L| = 11. There exist 3, 628, 800 possible

Hamiltonian circuits, at least one of which is an optimal solution. Now consider the VRP with |L|,

where the depot is included in L. Substituting |L| = 10 into Equation 6.1 yields P = 1023. Thus

for each of the 3, 628, 800 Hamiltonian circuits, an additional 1023 partitionings must be considered

for a total of 3, 715, 891, 199 possible solutions. Although all of the |L|! Hamiltonian circuits are

distinct, this approximation includes duplicates which often appear in the search space for GAs

like GVR and other stochastic searches.

For a simple benchmark problem, A-n32-k5, |L|! = 2.63130836×1035 and P = 4, 294, 967, 295.

Equation 6.2 is a rough approximation for the combinatorics of the problem. For large benchmark

problems, the combinatorics quickly become intractable. Even if evaluating each possible solution

only requires 1 cycle on a 1GHz processor, 8.34382410368× 1021 years are required to evaluate all

possible solutions in order to prove solution optimality. Parallel computing metrics can only help
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Table 6.1: Summary of benchmark results from Experiment 2
Problem prep pswp pinv pdis pins fitn. best % diff

A-n32-k5 ** ** ** ** ** 784 784 0

A-n54-k7 ** ** ** ** ** 1167 1167 0

A-n69-k9 0.5 0.15 0.15 0.15 0.1 1164 1159 0.4

B-n63-k10 0.5 0.05 0.15 0.1 0.1 1507 1496 0.7

E-n76-k8 0 0.15 0.1 0.1 0.05 741 735 0.8

M-n200-k17 0.5 0.1 0.15 0.1 0.1 1348 1296 3.9

by a constant factor p, decreasing that amount of time proportionally to the number of processors.

ComV RP = |L|! · 2|L| − 1 (6.2)

6.2 Results from Experiments in Routing

Given the importance of effective search techniques and the combinatorics of the VRP, ex-

periments measuring GVR’s effectiveness are now presented.

Experiment 1. For all ratios of penalty functions given by Equation 5.1, no solutions were

feasible. Given that problem A-n32-k5 is considered an ‘easy’ benchmark problem, these results

suggest at a minimum that Equation 5.1 is not an effective static penalty function, and more likely,

that static penalty functions are not effective techniques for guiding the search process. Results

from Experiment 2 produce results competitive with the best-published results on A-n32-k5 in

under 300 generations. It appears that penalizing solutions to the problem is not effective in part

because of the sheer combinatorics. All other experiments in this suite use repair functions to

guide the search process. Future work in investigating penalty functions should inspect adaptive

or dynamic approaches [6].

Experiment 2. The GA produces optimal or near optimal results for the CVRP benchmarks

tested. All results are more than adequate for effective vehicle routing with very little time for a

priori computation. Known optimums were quickly reached for all tested parameter combinations
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in problems A-n32-k5 and A-n54-k7. Near optimal and high quality solutions for all other parameter

combinations were produced for all other problems.

The high quality results GVR produces are desirable, but it is important to determine how

fast the search converges on these results if it is to provide the engine for a route planning system

that demands near optimal solutions as quickly as possible. Mission planning does not necessarily

entail an optimum solution; rather, solutions within a particular tolerance are often acceptable.

Additionally, it might be noted that the exponential increase in solution quality suggests that this

algorithmic technique is likely to provide competitive results for instances of the Dynamic VRP, in

which delivery schedules might change while vehicles are en route. A graphical display of the search

progress over time reveals that a period of rapid improvement in solution quality is followed by long

periods of stagnation for all benchmark problems. In the end, this type of convergence is almost

ideal for fast a priori routing. This suggests that a local search or a similar technique could be used

during this period of stagnation in lieu of continuing the global search with the GA, although the

GA does continue to gradually improve results. It is also evident that GVR increases the number of

good building blocks at an exponential rate, per the Schema Theorem1 [72]. Gradually improving

partial solutions in a problem like the VRP is more than reasonable; locations close together

gradually link into routes, and routes that complement one another have a higher probability of

survival and continued improvement. The results from Experiment 5 presents the results from

increasing the selection pressure and reinitializing the population during these periods. Results

from Experiment 6 present the results from trying a local search as a post-processing routine.

Figure 6.1 shows the max, min, and average fitness values of each generation for benchmark

problems A-n32-k5 and Mn-200-k17. Problems A-n63-k10, A-n69-k9, B-n63-k10, and E-n76-k8

result in the same net effect: a period of rapid increase in solution quality is followed by a period

of stagnation with very little improvements occurring. Only the first 500 generations are shown.

1Acceptance of the Schema Theorem is certainly not unanimous [67].
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Figure 6.1: Solution quality exponentially increases

Note that the elitism employed in the GA results in a monotonically non-increasing minimum

fitness value over time. The fluctuations in the maximum and average fitness values illustrates that

exploration is taking place, but the stagnation of minimum fitness values indicates that the search

space is treacherous once solutions become nearly optimal. A fair description of the search space

at this low level amounts to something like trying to sink a golf ball into a hole surrounded by

potholes and ruts from 100 yards away using only a bent putter.
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Table 6.2: Search times for selected benchmarks based upon the search time per generation and
a subjective search termination based upon stagnation trends from the fitness over time graphs.

Benchmark sec/gen termination after routing time
A-n32-k5 0.001423 500 7.15 sec
A-n69-k9 0.02916 5000 2.43 min

B-n63-k10 0.0277 10000 4.61 min
E-n76-k8 0.0311 10000 5.18 min

M-n200-k17 0.158 15000 39.5 min

Table 6.2 breaks down the computation time required for each generation and hypothesizes

an a priori routing time based upon subjectively terminating the search after the search begins

to stagnate. The calculated times per generation are calculated by dividing an entire search time

by the number of generations and taking the average. The runs were executed on a 32-bit AMD

Athlon processor running at 2.2 GHz with 512kB of cache and 1GB of memory.

Given a ‘man-in-the-loop’ controller or even a primitive threshold condition to detect stag-

nation, the GA produces exceptional routing times and high quality solutions for very difficult

NP-complete CVRP benchmark problems.

Experiment 3. This experiment varied two mutation rates over a fixed range in incremental

amounts while holding the other two mutation rates constant for the best results on problem M-

n200-k17 in Experiment 2. The results of the experiment as shown in Figure 6.2 simply provide a

visual display of the problem landscape as a projection of two dimensions. Portions of the surface

near the front of the plot are not displayed if it were to block any part of the entire contour

map, and consequently, cause data loss in the graph. Very small adjustments to mutation rates can

impact the quality of solution discovered by GVR. This insight confirms the idea that the landscape

searched is very jagged and that local minimal run rampant. Global minima are very difficult to

find, even though the local minima are not very different in terms of percentage difference. For

mission routing purposes, sensitivities to mutation parameters might be overcome by having several

processors compute routes using different mutation parameters in parallel, or the mutators might

be encoded as part of the chromosome in an effort to become self-tuning.
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Figure 6.2: Effects of varying two mutation rates while holding the others constant.

Experiment 4. Table 6.3 illustrates the results of running 11 different seeded runs with the

best results from problem M-n200-k17. Segmentation packing produces better results in 6 of the

11 trials, but a Student’s T-test with α = 0.05 reveals that there is not a statistical significance

between the two packing methods. Intuitively, it seems that the segmentation packing method

should have produced superior results, because it does not disrupt the good building blocks. A

possible explanation that the two methods are not significantly different, however, might be that

the recombination operators sufficiently exploit the solution space enough to compensate for any

disrupted building blocks.
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Table 6.3: Results from vehicle packings
Seed Tight Segmentation

1900 1385 1430

2003 1441 1445

2020 1424 1348

3131 1408 1387

4242 1387 1366

5353 1428 1360

5555 1420 1390

6038 1443 1387

7777 1444 1445

8765 1385 1394

9843 1389 1391

AVERAGE 1414 1394.818182

STD DEV 24.2363364 32.66440932

Table 6.4: Reinitializing does not improve results.
Seed 2020 Seed 3131 Seed 4242

4000 {8000,12000} 4000 {8000,12000} 4000 {8000,12000}

{5,10,15,20} 1359 1345 1412 1395 1361 1375

Experiment 5. Experiment 2 produced a solution of value 1348 for problem M-n200-k17

without reinitialization. Reinitializing with the same random number seed produced a solution of

lower quality in all cases except for one, where the improvement was negligibly improved to 1345.

This indicates that ‘good’ partial solutions, when continually exploited, can continue to improve to

some degree by converging to local minima. Reinitialization disrupts the good building blocks, even

though it provides the opportunity for more of the search space to be examined. This experiment,

like the previous ones, provides insight into the jaggedness of the search space and the abundance

of local minima. A viable routing algorithm demands a quick high-quality solution, which is most

likely not an optimum solution. Other approaches to improve solution quality should be tried, but

in the interim, existing GVR solutions are still more than adequate for a UAV routing application.

Experiment 6. In all cases, the local search algorithm employed did not improve solution

quality. The most likely reason is because the fitness landscape, as previously discussed, is especially

treacherous once solutions approach near optimality. There are concentric layers of myriad local

minima scattered throughout the space that are high-quality even when compared to the optimum.
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It may be difficult even for a lambda exchange algorithm or other local search technique to improve

such near-optimal solutions.
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Figure 6.3: Reinitializations over time.

By the ‘No Free Lunch Theorem’ [73], there is no single search technique that can work for

all problems in all cases. Consequently, the most important meta-level knowledge about search

is to understand and adapt to the search landscape. A crude measure of the search landscape

is known about the CVRP just by virtue of it being an NP-Complete problem. More specific

insight about the search landscape is alluded to in Experiment 3 via the fairly high fluctuations in

solution quality by changing the GA’s mutation parameters. Even more precise information about

the search landscape can be gleaned by examining partial solutions to the problem in incremental

time steps. Particular consideration should be given to partial solutions obtained during times of

stagnation, and final solutions obtained from the search should be compared to proven optimal

solutions if available.

Figure 6.4 shows the landscape for benchmark A-n32-k5 at interesting points during the

search. Note that for this problem of small size, the number of local minima is quite large and

that most of the time searching is spent escaping from the concentric layers of local minima. Good

partial solutions quickly emerge, but most of the search time is spent overcoming various layers of

local minima.

82



(a) Generation 1 (b) Generation 121

(c) Generation 229 (d) Generation 940

(e) Generation 1180 (f) Generation 2100

Figure 6.4: Snapshots of partial solutions for benchmark problem A-n32-k5.
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6.3 Results from Experiments in Simulation

Experiment 7. This experiment used UAV swarm sizes |SWARM | ∈ {32, 64, 128, 256} and

CPU sizes that are powers of 2 so that the UAVs per CPU could divide evenly to measure per-

formance of the BTB algorithm. Given previous results from Corner [16], optimistic processing of

UAV sizes much larger than these swarm sizes is possible because of the sheer number of rollbacks

and long run times that occur using optimistic time management via the Breathing Time Warp

(BTW) or Breathing Time Buckets (BTB) algorithms from the SPEEDES libraries.

Experimentation in this suite confirmed that the simulation currently cannot produce results

for swarm sizes of 512 or larger using optimistic event processing. This is very likely explained by

the excessive memory required by SPEEDES for optimistic event processing, in part because of

the overhead involved with rolling back events. Manually inspecting memory usage using standard

system commands such as “top” for CPUs running ratios of more than 32 CPUs reveals that

eventually the entire node’s memory is used up by the “pswarm” and “ExternalModule” processes,

and the node eventually crashes. Results can probably be obtained by running much smaller

simulation durations, but it is unlikely that reliable steady state results can be obtained for much

less than 12 simulation time units [16]. Even if results could be obtained for less than this steady

state threshold, it would provide almost no benefit for simulation purposes; any realistic UAV

simulation contains at least thousands of time increments.

Speedup and efficiency calculations for this experiment define the best serial runtimes as

the ones from using SPEEDES with a single CPU. It is important to note that Corner’s speedup

calculations used serial run times from the original Linux port of ‘cline.’ Corner was not able

to produce any speedup using the best serial runtimes as the ones shown in Table 6.5. This

conundrum can begin to be explained by recalling that the inherent swarm model taken from

Kadrovach’s Ph.D research was designed using a global data structure in which all swarm members

communicated with one another, yielding O(|SWARM |2) communications at each step. Given the
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Table 6.5: Results from page 94 of Corner’s research [16], citing the best serial runtimes for
swarm simulation on the Linux port of ‘cline.’ Parallel runtimes using the SPEEDES library do
not even begin to approach these runtimes even in the best cases.

UAV Count Execution Time (sec)
100 4
500 198

1000 1478

aforementioned algorithm designed as a serial application, empirical results give no hope whatsoever

that a parallelization of the serial model as SPEEDES libraries can ever produce any speedup.

Experiments 8-10 in the remainder of this test suite continue to calculate speedup and efficiency

using the runtimes from the SPEEDES application on a single CPU as the base.

Results from this experiment indicate that for the given swarm configurations and for 12

simulation time units, the wall clock time can be decreased, speedup can be gained using BTB and

an ‘apples to apples’ comparison. Figure 5(c) shows the runtimes from a matrix of runs on various

processors. Figures 5(b) and 5(a) show the speedup and efficiency trends.

Somewhat unexpected is the increase in the run times when transitioning from 1 to 2 CPUs.

This is likely explained by the communication inefficiencies introduced because of the proxies used

within the SPEEDES libraries and is consistent with the trends found in Corner’s research [16].

Transitioning from 2 to 4 CPUS probably relieves some of the administrative burden of overhead,

thereby decreasing some of the communication inefficiencies introduced by the proxies and allowing

some speedup to occur.
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(a) Efficiency

(b) Speedup

(c) Run Times

Figure 6.5: Results show that for a small swarm of UAVs, there is eventually only negligible

gain for parallelizing the swarm algorithm using the SPEEDES library. For a larger swarm size,

however, there is significant gain, but efficiency quickly becomes a predominant concern.
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Table 6.6: Comparison of wall clock times for simulating various swarm sizes on a single CPU
using conservative and optimistic time management with SPEEDES.

—SWARM— conservative optimistic % diff
20 3.77 5.23 27.91
40 13.35 15.67 14.81
60 39.17 40.58 3.47
80 86.73 88.84 2.37

100 170.79 176.37 3.16
120 312.03 326.49 4.42
140 534.98 551.74 3.03
160 860.05 886.45 2.98
180 1326.09 1382.55 4.08
200 1963.76 2053.95 4.39

Experiment 8. This experiment measures the difference between using conservative and op-

timistic techniques for identical runs of a SPEEDES application on a single CPU. As expected,

results show that there is some additional overhead for using an optimistic processing technique,

but this overhead is small enough to be considered negligible. For the smallest swarm sizes

|SWARM | ∈ 20, 40, the percent difference is quite large, but only because of a constant over-

head imposed by starting up and configuring the SPEEDES server in comparison to the very short

runtime for such a small swarm size. Results from this experiment verify that there is not a signif-

icant overhead imposed by SPEEDES for optimistic time management, and in particular, for the

BTB. Given BTB’s small overhead, it is likely that performance issues alluded to by Corner are

primarily the results of excessive rollbacks. In Corner’s own words from “Experiment P2” [16]:

“Obvious eyesores are the millions of rollbacks that are occurring on a regular basis.
This is probably due to the optimistic processing of future events that need rolled back
because each UAV depends on the data that has already been modified at a future
simulation time, so that n UAVs are causing rollbacks on all other UAVs.

The final experiments in this suite are explicitly measure and compare performance between con-

servative and optimistic even processing with SPEEDES.

Experiment 9. This experiment compares the results for different lookahead window values

for a conservative time scheme with SPEEDES to determine the general sensitivity to the lookahead

value, as well as to determining the impact of not having a lookahead value at all.
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Overall results are given in Figure 6.6 and indicate using even small values for a lookahead

window significantly decrease the runtime for conservative event processing in comparison to using

a lookahead value of 0.0. Difference in lookahead values can be explicitly compared using the values

from Table 6.7.

(a) All Conservative Runs on a logarithmic scale

(b) The tightly grouped series of runs on a standard linear scale.

Figure 6.6: Results from a series of runs using 5 CPUs with various lookahead window values.
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Table 6.7: Explicit runtimes from running various swarm sizes on 5 CPUs with various lookahead
values.

—SWARM— lookahead 0.0 lookahead 3.0 lookahead 4.0 lookahead 5.0 lookahead 6.0 lookahead 7.0
55 28.26 6.57 6.05 4.92 5.14 4.78
60 33.21 7.97 7.54 5.99 7.28 5.66
65 43.66 9.65 9.08 9.11 8.6 8.03
70 46.59 10.5 12.01 11.59 9.65 10.22
75 54.13 12.99 12.98 12.57 12.54 12.07
80 67.97 16.68 16.48 15.14 15.83 14.15
85 67.98 20.29 19.16 18.89 17.39 17.73
90 94.59 24.83 23 22.17 22.8 21.29
95 103.69 27.21 27.06 27.05 25.55 25.38

100 117.25 33.57 33.19 31.92 30.52 30.66

Experiment 10. Given that an optimistic time management technique does not impose a

significant overhead when compared to a conservative technique, and that results from optimistic

time management for a UAV swarming application with SPEEDES are less than impressive, an

objective comparison is made between conservative and optimistic SPEEDES time management

techniques.

The runtimes, speedup, and efficiency graphs from a series of conservative runs comparable

to the optimistic runs using BTB from Experiment 7 are given in 6.8.

The metrics from the conservative runs and shown in this experiment exemplify the ‘regular’

behavior expected by adding additional processors. In particular, the runtimes decrease in all

cases by the addition of more CPUs as show in Figure 8(c); there is observable speedup from the

additional CPUs, and for these particular runs, the number of additional CPUs did not become

great enough to begin leveling out the speedup curve in Figure 8(b); and finally, the efficiency

decreased within an acceptable tolerance that could have been expected.

In fact, the only abnormalities with the data collected using CTM are ‘good’ abnormalities–

a slight superlinear speedup that can be observed for the largest swarm size of 512 UAVs. The

superlinear speedup in this case is most likely explained by hardware features that put the serial

implementation at a disadvantage [33]. In this case, the limiting hardware feature is probably the

memory limitations from processing 512 UAVs on a single CPU. Not given enough memory, the

CPU would have had to write and read data from disk periodically, an operation that can take
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hundreds of times the duration from accessing memory in the worst case. Dividing the swarm

size between 16 CPUs, however, would have eliminated this ‘problem’, thus resulting an perceived

superlinear speedup.

Regardless of philosophical arguments for optimistic time management in PDES, the results

from Experiments 7 and 10 conclusively show for the given configurations and data sets that con-

servative time management with SPEEDES produces superior results using this particular swarm

model. Consider the side-by-side comparison of runtimes given in Figure 6.7.

Figure 6.7: Conservative time management outperforms the optimistic time management by

approximately a factor of 2.

6.3.1 Synthesis of Experimental Results. Recall that the underlying objectives of the

experiments in this suite were to produce an efficient and effective routing algorithm that can be

synthesized into existing AFIT UAV swarm research and to provide parallel experimentation and

analysis that can ultimately improve the performance of the AFIT UAV Swarm Simulator so that

it can be of benefit to AFIT UAV research in general and to the sponsors of this research. The

experiments in this suite more than satisfactorily realizes both of these objectives. An efficient and

effective routing algorithm is produced that produces high quality solutions in very reasonable a

priori computing times. In fact, the algorithm is fast enough to process dynamic routing changes

while en route in addition to the a priori route scheduling.
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(a) Efficiency

(b) Speedup

(c) Run Times

Figure 6.8: Results show that for a small swarm of UAVs, there is only negligible gain for

parallelizing the swarm algorithm. For a larger swarm size, however, there is significant gain, but

efficiency quickly becomes of predominant concern.
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Additionally, sufficient analysis and data is produced that suggests a transition from an optimistic to

a conservative time management scheme with the SPEEDES library improves simulation runtimes

in the general case by more than factor of 2 in addition to providing much more ‘regular’ behavior

with regard to parallel computing analysis. Such an enormous improvement is a large step toward

simulating swarms of UAVs in almost realtime.

Given a routing algorithm, and a more high fidelity parallel simulation, the next logical step

in the research cycle is to unify the existing routing algorithm and parallel simulation. This work

can be accomplished by either replacing or modifying the existing swarm model from Kadrovach’s

research [39] with a swarm model that can be routed amongst coordinates. While the existing swarm

model does provide realistic swarm behavior, it is of little use without the ability to be routed. It

is likely that the entire swarm model may need to be redesigned from the ground up if some of the

guidelines from Kadrovach’s Ph.D dissertation are determined to not provide a satisfactory routing

capability. Routing a swarm should not be a two step process that can be decomposed into separate

swarm behavior and routing models. Rather, the two should be somewhat tightly coupled so that

the decentralized control of the swarm can automatically accommodate changes and deviations

from an original routing schedule. Once the simulation is extended to provide a swarm model

that can be routed, the routing algorithm can provide an initial way point sequence for simulating

sorties, and the simulation can then be extended to include threats, dynamic changes to the way

point schedule, etc. One very high level architecture for a more unified simulation is shown in

Figure 6.9

6.4 Summary

This chapter presented the results of experiments in measuring the efficiency and effectiveness

of a particular routing algorithm employing a Genetic Algorithm. Results show that with the use of

a repair function, the Schema Theorem holds, and very high quality results are rapidly approached
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Figure 6.9: A high level swarm simulation architecture capable a priori and dynamic routing in
addition to threat detection and other constraints.

as the result of good low-order buildling blocks exponentially increasing as the search progresses.

This characteristic is desirable for a mission planning system.

Additionally, analysis from various CPU and swarm configurations simulated as a SPEEDES

application shows that SPEEDES applications exhibit ‘regular’ parallel behavior with regard to

speedup and efficiency when run in a conservative mode. Running in an optimistic mode, on the

other hand, produces some abnormalities with the introduction of additional CPUs. The results for

a UAV swarming application suggest that conservative time management outperforms optimistic

techniques by approximately a factor of 2.
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VII. Conclusions

A discovery is the product of a previous discovery
and in its turn will give rise to a further discovery

–Joseph Louis Gay-Lussac

This research investigation begins by presenting Unmanned Aerial Vehicle (UAV) research as

the ultimate scientific engineering endeavor and by establishing the principal motivation of this

particular UAV research as the desire to empower our nation’s military to fight smarter battles

and consequently save more lives. Routing and simulating large swarms of UAVs are two pillars

directly supporting UAV research and are the overarching concepts addressed in this particular

research investigation. The remainder of this chapter reviews the results of this endeavor and the

completion of its objectives.

7.1 Completion of Objectives

Objective 1: Formulate, implement, and empirically measure the performance of a swarm

routing algorithm by means of efficiency and effectiveness metrics

The analysis and discussion related to Experiments 1-6 as presented in Chapters 5 and 6 com-

plete this objective. A robust routing algorithm employing a Genetic Algorithm is developed that

produces high quality solutions to hard Vehicle Routing Problem instantiations in very little time.

This algorithm is shown to be efficient, to be able to adapt to a changing search landscape, and to

produce optimal or near optimal results for common benchmark problems.

Objective 2: Analyze, evaluate, improve the efficiency of, and extend the capabilities of the

existing AFIT Swarm Simulator as a Parallel Discrete Event Simulation and a swarm intelligence

model

The entire experimentation suite from Chapters 5 and 6 support this objective. Furthermore,

an additional discussion on synthesizing the routing algorithm into a parallel swarm simulation

based on previous AFIT research using the Synchronous Environment for Emulation and Discrete
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Event Simulation (SPEEDES) based upon the results from the experimentation suite supports this

objective’s fulfillment.

Objective 3: Application and in depth analysis of a Genetic Algorithm for online UAV routing

Analysis from Experiments 7-10 as presented in Chapters 5 & 6 directly fulfill this objective. Results

show that previous research using an optimistic time management method for communication

between members of a swarm yields inferior results to a conservative time management scheme.

Although somewhat unexpected, speedup is even superlinear in some of the test cases.

7.2 Research Contributions

Previous research showed the feasibility of modeling and visualizing swarm dynamics for use

in UAV research, and an extension of this work resulted in a working parallel implementation. A

working parallel implementation of swarming reconnaissance is a significant accomplishment, but

several important aspects of functionality still remained: 1) A system to provide an efficient and

effective routing schedule for the swarm to traverse, and 2) The need to remove overwhelming

inefficiencies from the parallel simulation so that realistic UAV sorties can be accomplished and

visualized in reasonable lengths of time.

This research investigation fulfills both of these functional aspects through a suite of relevant

experimentation and analysis. Additionally, this effort provides a more stable simulation test bed

via the refactoring of selected software components and providing a friendlier and extensible user

interface to the simulation.

The simulation results from this investigation that show an almost superlinear speedup re-

sulting from a switch to a conservative time management scheme for the parallel simulation provide

a pivotal step toward simulation, routing, and visualizing large swarms of UAVs in direct support

of the Air Force Research Laboratory Electronic Warfare Sensors Directorate (AFRL/SNZW),

and in particular, its Virtual Combat Laboratory. Ultimately, this research and its impact on
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AFRL/SNZW means being able to fight smarter and more effective battles, and saving human

lives by keeping them out of harm’s way.

7.3 Future Work

Future work should refactor, extend, or provide an alternate swarm model that is capable of

starting and ending at desired coordinate locations. Without the capability, a swarm model–no

matter how realistic or efficient–is of little use to real world applications. The new or enhanced

model of swarm behavior should carefully consider the effects of routing individual swarm members

on the effects of overall swarm dynamics. For use in a parallel simulation, it is crucial that the

swarm routing algorithm be decomposable into constituent subparts that lend themselves to parallel

computation. Given a routable swarm model, the routing algorithm as developed in this research

can be fully integrated and extended to accommodate a variety of constraints.

In order to simulate much larger swarms of UAVs, the simulation testbed should be configured

to run on a larger Beowulf cluster involving more than the 32 processors currently available at

the time of this work. Additional configuration and customization of the SPEEDES simulation

settings is also likely to provide additional performance enhancements, because SPEEDES can

be finely tuned for specific applications. Research as this point has not attempted to eliminate

unnecessary inefficiencies in the protocol stack or to fine tune many of the parameter values available

in SPEEDES.
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Appendix A. Some CVRP Benchmarks
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Appendix B. Proven Optimal Solutions for Some CVRP Benchmarks
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Appendix C. Script to Graph a Problem

in TSPLIB Format with GnuPlot

#!/usr/bin/perl

if ($#ARGV != 0) {

die "Usage: %readProb.pl <vrp file>\n";

}

open DATAFILE, "$ARGV[0]"

or die "Error opening file $ARGV[0]";

while (<DATAFILE>) {#processes first argument

if (m/DIMENSION.*/) {

@fields = split(" ", $_);

$num_locations = $fields[2];

}

if (m/NODE_COORD_SECTION/) {

$x_max=0;

$y_max=0;

$x_min=0;

$y_min=0;

for ($i=1; $i <= $num_locations; $i+=1) {

$_ = <DATAFILE>;

#first location is depot

@fields = split(" ", $_);

$x_coords[$i] = $fields[1];

$y_coords[$i] = $fields[2];

if ($x_coords[$i] > $x_max) {

$x_max = $x_coords[$i];

}

if ($y_coords[$i] > $y_max) {

$y_max = $y_coords[$i];

}

if ($x_coords[$i] < $x_min) {

$x_min = $x_coords[$i];

}

if ($y_coords[$i] < $y_min) {

$y_min = $y_coords[$i];

}

}

}

if (m/DEMAND_SECTION/) {

for ($i=1; $i <= $num_locations; $i+=1) {

$_ = <DATAFILE>;

#first location is depot

@fields = split(" ", $_);

$demands[$i] = $fields[1];

}

}

}

close DATAFILE;

open(outfile, ">/tmp/tempdepot");

for ($i=1; $i <= $num_locations; $i +=1) {

print outfile "$x_coords[$i] $y_coords[$i]\n";

}

close outfile;

$title = substr($ARGV[0], 3, (length $ARGV[0])-7);

open(outfile, ">/tmp/temp.gnu");

print outfile "set term postscript eps color solid 25\n";

print outfile "set nokey\n";

print outfile "set size 1.5,1.5\n";

print outfile "set pointsize 4.0\n";

print outfile "set out \"/dev/null\"\n";

print outfile "set title \"$title\"\n";

$x_max +=1;

$y_max +=1;

$y_min -=1;

$x_min -=1;

print outfile "plot [$x_min:$x_max] [$y_min:$y_max] \"/tmp/tempdepot\" using 1:2 with points\n";

for ($i=1; $i <= $num_locations; $i+=1) {

$temp = $y_coords[$i] +0.5;

print outfile "set label \"$demands[$i]\" at first $x_coords[$i],’’;

print outfile ’’ first $temp font \"Times,14\" front center\n";

}

print outfile "set out \"$title-prob.eps\"\n";

print outfile "replot\n";

close outfile;

system "gnuplot /tmp/temp.gnu";
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Appendix D. Script to to Produce

vrpPlot.awk Format

#!/usr/bin/perl

#read the file containing the X Y values in TSPlib format

#these values are contained between NODE_COORD_SECTION and

#DEMAND_SECTION in the following form: id x y

if ($#ARGV != 1) {

die "Usage: %readOptimal.pl <vrp file> <opt file>\n";

}

open DATAFILE, "$ARGV[0]"

or die "Error opening file $ARGV[0]";

while (<DATAFILE>) {#processes first argument

if (m/DIMENSION.*/) {

@fields = split(" ", $_);

$num_locations = $fields[2];

}

if (m/NODE_COORD_SECTION/) {

for ($i=1; $i <= $num_locations; $i+=1) {

$_ = <DATAFILE>;

#first location is depot

@fields = split(" ", $_);

$x_coords[$i] = $fields[1];

$y_coords[$i] = $fields[2];

}

}

if (m/DEMAND_SECTION/) {

for ($i=1; $i <= $num_locations; $i+=1) {

$_ = <DATAFILE>;

#first location is depot

@fields = split(" ", $_);

$demands[$i] = $fields[1];

}

}

}

close DATAFILE;

#Sample file format for optimal values:

#Route #1: 21 31 19 17 13 7 26

#Route #2: 12 1 16 30

#Route #3: 27 24

#Route #4: 29 18 8 9 22 15 10 25 5 20

#Route #5: 14 28 11 4 23 3 2 6

#cost 784

#as each line is processed, spit out its coordinates

#on a line of their own

#separate routes with "* *" to include a final "* *" at

#EOF

open DATAFILE, "$ARGV[1]"

or die "Error opening file $ARGV[1]";

while (<DATAFILE>) {

@fields = split(" ", $_);

$sum_of_demands = 0;

if (!m/.*cost.*/) {

print "$x_coords[1] $y_coords[1] $demands[1]\n";

for ($i=2; $i<= $#fields; $i+=1) {

print "$x_coords[$fields[$i]+1] $y_coords[$fields[$i]+1]";

print " $demands[$fields[$i]+1]\n";

$sum_of_demands += $demands[$fields[$i]+1];

}

print "$x_coords[1] $y_coords[1] $demands[1]\n";

print "*$sum_of_demands*\n";

}

}
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Appendix E. Script to Graph an

Optimal Solution for a CVRP Problem

#!/sw/bin/gawk -f

##############################################################

#Matthew Russell 25 Oct 04

#

#Reads CVRP output files of the following format:

#######################No blank header line

#X, Y, Demand

#X, Y, Demand

#...

#X, Y, Demand

#*TotalDemandForRoute*

#X, Y, Demand

#X, Y, Demand

#...

#X, Y, Demand

######################No blank footer line

#Each route is separated by a delimeter *TotalDemandForRoute*

#This script creates the files necessary for gnuplot to create

#a nice visual of the solution in color with the nodes labelled

#according to their demand. Some text is also produced in the

#terminal that is useful for captioning. If you have trouble following

#the script, look at the output it produces and make sure you understand

#the basic control structure of how an awk script processed data.

#See the man page for more info.

##############################################################

BEGIN {

num_routes=0

curr_location=0

print "set term postscript eps color solid 25" > ARGV[1] ".gnu"

print "set nokey" >> ARGV[1] ".gnu"

print "set size 1.5,1.5" >> ARGV[1] ".gnu"

print "set pointsize 2.5" >> ARGV[1] ".gnu"

print "set title \"" ARGV[1] "\"" >> ARGV[1] ".gnu"

print "set out ’/dev/null’" >> ARGV[1] ".gnu"

print "\nDemand Information for " ARGV[1] ":"

}

{

if(/\*([0-9]*)\*/) {

print "\troute" num_routes " demand=" substr($1, 2, length($1)-2);

num_routes += 1;

}

else {

print $1 " " $2 >> ARGV[1]"_route" num_routes

x_coords[curr_location] = $1

y_coords[curr_location] = $2

demands[curr_location] = $3

curr_location += 1

}

}

END {

plot_expression = "plot \"" ARGV[1] "_route0\" w lp pt 7 lw 3"

for (i=0; i < num_routes; i++) {

plot_expression = plot_expression ", \"" ARGV[1] "_route" i "\" w lp pt 7 lw 3"

}

print plot_expression >> ARGV[1] ".gnu"

for (i=0; i < curr_location; i++) {

print "set label \"" demands[i] "\" at first " x_coords[i] ", first "

(y_coords[i]+0.5) " font \"Times,14\" front center" >> ARGV[1] ".gnu"

}

print "set out ’" ARGV[1] ".eps’" >> ARGV[1] ".gnu"

print "replot" >> ARGV[1] ".gnu"

}
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Appendix F. Tabluated Results from Experiment 1 (Penalty Function)

prob pc pm swap pm displacement pm inversion pm insertion popsize num gen cap pen min veh pen fitness

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 0 466

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 1 467

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 1 525.67

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 1 583.62

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 1 694.24

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 1 897.16

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 1 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 1 1700.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 1 2207.88

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 1 2072

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 1 2057

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 2 468

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 2 584.62

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 2 695.24

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 2 795.16

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 2 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 2 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 2 1685.68

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 2 2149.4

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 2 2069

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 2 2135

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 4 470

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 4 648.04

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 4 692.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 4 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 4 946.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 4 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 4 1650.76

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 4 2124.44

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 4 2082

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 4 2079

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 8 474

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 8 653.07

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 8 692.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 8 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 8 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 8 1253.52
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A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 8 1705.44

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 8 2087.96

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 8 2115.16

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 8 2040

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 16 482

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 16 657.87

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 16 715.4

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 16 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 16 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 16 1246.52

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 16 1621.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 16 2119.64

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 16 2138.16

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 16 2078

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 32 498

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 32 648.37

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 32 710.58

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 32 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 32 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 32 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 32 1655.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 32 2113.96

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 32 2073

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 32 2080

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 64 530

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 64 648.37

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 64 692.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 64 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 64 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 64 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 64 1655.16

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 64 2051.48

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 64 2132

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 64 2140

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 128 594

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 128 657.87

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 128 692.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 128 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 128 910.84

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 128 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 128 1686.32

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 128 2113.96

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 128 2055

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 128 2062

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 0 256 598

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 1 256 648.04

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 2 256 692.08

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 4 256 765.92

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 8 256 910.84
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A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 16 256 1200.2

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 32 256 1637.76

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 64 256 2163.68

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 128 256 2105

A-n32-k5 0.75 0.15 0.15 0.15 0.15 200 50000 256 256 2078
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Appendix G. Fitness Over Time Graphs for Problems A-n32-k5, A-n63-k10,

A-n69-k9, B-n63-k10, and E-n76-k8, and M-n200-k17

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0  100  200  300  400  500

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Benchmark An32k5

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0  2000  4000  6000  8000  10000

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Benchmark An32k5

195



 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  100  200  300  400  500

ge
ne

ra
tio

ns

fitness values

Min, Max, and Average Fitness Values for An63k10

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  10000  20000  30000  40000  50000

ge
ne

ra
tio

ns

fitness values

Min, Max, and Average Fitness Values for An63k10

196



 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  100  200  300  400  500

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for An69k9

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  10000  20000  30000  40000  50000

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for An69k9

197



 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0  100  200  300  400  500

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Bn63k10

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0  10000  20000  30000  40000  50000

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Bn63k10

198



 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  100  200  300  400  500

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for En76k8

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  10000  20000  30000  40000  50000

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for En76k8

199



 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  100  200  300  400  500

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Mn200k17

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  20000  40000  60000  80000  100000

fit
ne

ss
 v

al
ue

s

generations

Min, Max, and Average Fitness Values for Mn200k17

200



Appendix H. Reinitialization Experiment Graphs for Problem M-n200-k17
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Appendix I. Technical Notes on Compiling GALib and Auxiliary Code

I.1 Compilation Notes

GALib comes with excellent compilation instructions and should be a standard compile for

32-bit and 64-bit Linux system alike, although some warnings may appear and continue to appear

as the GCC compiler becomes more strict. The end result of the compile is a static library that

must be recompiled each time any code changes to source code the library uses to build. Such

changes include explicit source code changes, but also changes to preprocessor statements if a

different random number generator is to be used.

I.2 Auxiliary Code

The following three code snippets are necessary for compiling the C++ project containing

source file GVRGenome.h, which depends on the RandomTournamentSelector class and produces

a single offspring from its crossover operators.

/* ----------------------------------------------------------------------------

RandomTournamentSelector

GALib surprisingly did not come with a tournament selection operator that chooses members from the tournament

the prototype for the function definition.

---------------------------------------------------------------------------- */

class GARandomTournamentSelector : public GASelectionScheme {

public:

GADefineIdentity("GARandomTournamentSelector", 123456);

GARandomTournamentSelector(int q=2, int w=GASelectionScheme::RAW) : GASelectionScheme(w) {tourney_size

GARandomTournamentSelector(const GARandomTournamentSelector& orig) { copy(orig); }
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GARandomTournamentSelector& operator=(const GASelectionScheme& orig)

{ if(&orig != this) copy(orig); return *this; }

virtual ~GARandomTournamentSelector() { }

virtual GASelectionScheme* clone() const { return new GARandomTournamentSelector; }

virtual GAGenome& select() const;

private:

int tourney_size;

};

/* ----------------------------------------------------------------------------

RandomTournamentSelector

GALib surprisingly did not come with a tournament selection operator that chooses members from the tournament

---------------------------------------------------------------------------- */

// Randomly select q individuals from the population. This selector does not

// care whether it operates on the fitness or objective scores. If a minimization

//problem, it returns the lowest score. if a maximization problem, it returns

//the highest

GAGenome&

GARandomTournamentSelector::select() const {

float best_score = 0.0;

int individual;

int best_individual;

bool maximize = true;
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//determine if this is a minimization or maximization problem

if(pop->order() == GAPopulation::LOW_IS_BEST) {

maximize = false;

best_score = MAXFLOAT;

}

for (int i=0; i < tourney_size; i++) {

individual = GARandomInt(0, pop->size()-1);

if (maximize) {

if (pop->individual(individual).score() > best_score) {

best_individual = individual;

best_score = pop->individual(individual).score();

}

}

else {

if (pop->individual(individual).score() < best_score) {

best_individual = individual;

best_score = pop->individual(individual).score();

}

}

}
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return pop->individual(best_individual);

}

/* ----------------------------------------------------------------------------

Changes to GASimpleGA::step() contained in GASelector.C

These changes were necessary because GVRGenome.h

produces one offspring (not two) from a crossover. The

GALib routines appear to all implicity expect two offspring.

---------------------------------------------------------------------------- */

void

GASimpleGA::step()

{

int i, mut, c1, c2;

GAGenome *mom, *dad; // tmp holders for selected genomes

GAPopulation *tmppop; // Swap the old population with the new pop.

tmppop = oldPop; // When we finish the ++ we want the newly

oldPop = pop; // generated population to be current (for

pop = tmppop; // references to it from member functions).

// Generate the individuals in the temporary population from individuals in

// the main population.

for(i=0; i<pop->size()-1; i+=2){ // takes care of odd population
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mom = &(oldPop->select());

dad = &(oldPop->select());

stats.numsel += 2; // keep track of number of selections

c1 = c2 = 0;

if(GAFlipCoin(pCrossover())){

int num_children =0;

stats.numcro += num_children = (*scross)(*mom, *dad,

&pop->individual(i), &pop->individual(i+1));

c1 = 1;

//Matthew Russell 10 Oct 04: if doing a single child crossover,

//pop->individual(i+1) needs to not be null, so go ahead and do another

//crossover for that one

//This isn’t exactly the cleanest way to do it (example 22 is arguably cleaner)

//but this generalizes

//a solution for now.

if (GAFlipCoin(pCrossover())) {

if (num_children ==1) {

mom = &(oldPop->select());

dad = &(oldPop->select());

stats.numsel += 2; // keep track of number of selections

stats.numcro += (*scross)(*mom, *dad,

&pop->individual(i+1), 0);

c1 = c2 = 1;
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}//if

}//if

else

pop->individual(i+1).copy(*mom);

}

else{

pop->individual( i ).copy(*mom);

pop->individual(i+1).copy(*dad);

}

stats.nummut += (mut = pop->individual( i ).mutate(pMutation()));

if(mut > 0) c1 = 1;

stats.nummut += (mut = pop->individual(i+1).mutate(pMutation()));

if(mut > 0) c2 = 1;

stats.numeval += c1 + c2;

}

if(pop->size() % 2 != 0){ // do the remaining population member

mom = &(oldPop->select());

dad = &(oldPop->select());

stats.numsel += 2; // keep track of number of selections

c1 = 0;

if(GAFlipCoin(pCrossover())){

stats.numcro += (*scross)(*mom, *dad, &pop->individual(i), (GAGenome*)0);

c1 = 1;

}
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else{

if(GARandomBit())

pop->individual( i ).copy(*mom);

else

pop->individual( i ).copy(*dad);

}

stats.nummut += (mut = pop->individual( i ).mutate(pMutation()));

if(mut > 0) c1 = 1;

stats.numeval += c1;

}

stats.numrep += pop->size();

pop->evaluate(gaTrue); // get info about current pop for next time

// If we are supposed to be elitist, carry the best individual from the old

// population into the current population. Be sure to check whether we are

// supposed to minimize or maximize.

if(minimaxi() == GAGeneticAlgorithm::MAXIMIZE) {

if(el && oldPop->best().score() > pop->best().score())

oldPop->replace(pop->replace(&(oldPop->best()), GAPopulation::WORST),

GAPopulation::BEST);

}

else {

if(el && oldPop->best().score() < pop->best().score())
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oldPop->replace(pop->replace(&(oldPop->best()), GAPopulation::WORST),

GAPopulation::BEST);

}

stats.update(*pop); // update the statistics by one generation

}

I.3 Building the GVR C++ source code

Because the function prototypes and bodies are all contained in the “.h” files rather than

being broken up (lots of library writers are moving to this approach in the C++ community as of

this writing), no full fledged Makefile is needed. Instead, the following Bash script will suffice just

fine. It depends on the environment variables that point to the GALib static library and its include

header files. BOOST is a C++ library available at http://www.boost.org that is only used to do

some typecasting (from string to numeric values).

#!/bin/bash

g++ test_harness.cpp -I$GALIB_INC -I$BOOST32_INCLUDES \

-L$GALIB_LIB -L$BOOST32_LIBS -lm -lga -o gvr
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